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ABSTRACT 
 

Population monitoring of wood bison is challenging because of their clumped 
distribution within a landscape composed of a matrix of open and forested habitats. Here, 
we review recent advances in methods for monitoring ungulate populations which are 
often clumped in distribution due to their gregarious nature or due to smaller-scale habitat 
selection. We begin with an overview of common sampling designs and methods for 
collecting relevant data. We then examine statistical methods for estimating the population 
characteristics of spatial distribution, size and trend. Included in this review is a discussion 
of demographic indicators and methods to assess distribution. One of our main conclusions 
is that management should be based on use of all population indictors. If there are 
estimates of population size, survival estimates, and recruitment rates then it is possible to 
fit multiple-data source models to further model demography and population trends. A 
variety of methods are available to estimate abundance and density of bison. Of these, 
distance sampling is most advantageous because it does not involve marking individual 
bison but still allows an estimate of detection probability needed to ensure robust 
estimates. It also allows further modeling of density within the survey area using density 
surface modeling. The main challenge for distance sampling is collection of field data that 
meets distance sampling assumptions as well as confronting variation in density due to 
aggregation of bison into larger groups. Power analyses suggest that annual abundance 
surveys are unlikely to detect year-to-year changes in population size. Anthrax outbreaks 
(detected by summer surveillance flights) will trigger the need for more intensive 
monitoring, but otherwise abundance should not change dramatically year to year. We 
propose various improvements for field-based methodologies as well as estimation 
methods to optimize survey design for monitoring bison populations.   
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PART A: APPROACHES FOR MONITORING UNGULATE POPULATIONS: 
GENERAL LITERATURE REVIEW 

 

Introduction 
Effective wildlife management requires monitoring changes in the spatial 

distribution of species, their population size, and their population trend (Williams et al. 
2002, Sinclair et al. 2006). Reliable estimates of these population characteristics are 
necessary for determining current population status and providing a basis for evaluating 
management decisions in an adaptive management framework (Holling 1978). Obtaining 
reliable estimates of population distribution, size or trend, however, is not a trivial task. 
Surveys designed to collect the relevant data are often costly and challenged by 
environmental factors (e.g. weather, land cover) and animal behaviours that can cause 
imperfect detection of all individuals, leading to estimates that are biased and/or imprecise 
(Williams et al. 2002).   

Three subpopulations of wood bison (Bison bison athabascae) occur within the 
Northwest Territories (NWT) (COSEWIC 2013) and are listed as Threatened under the 
NWT Species at Risk Act. The first goal of the Recovery Strategy for Wood Bison (Bison bison 
athabascae) in the Northwest Territories is to recover free-ranging, genetically diverse, 
healthy wood bison throughout their historic range in the NWT, which can sustain on-going 
harvests for the benefit of all NWT residents (Conference of Management Authorities 
2019). Population estimates and composition surveys are integral parts of the strategy. 
Population monitoring of wood bison is challenging because of their clumped distribution 
within a landscape composed of a matrix of open and forested habitats. Here, we review 
recent advances in methods for monitoring ungulate populations which are often clumped 
in distribution due to their gregarious nature or due to smaller-scale habitat selection. We 
begin with an overview of common sampling designs and methods for collecting relevant 
data. We then examine statistical methods for estimating the population characteristics of 
spatial distribution, size and trend.  

Traditional knowledge systems employ a variety of approaches for monitoring 
wildlife populations (Berkes et al. 2000, Berkes 2008) primarily aimed at understanding 
population changes in harvestable species (Moller et al. 2004). As bison have played a 
central role in Dené culture, and Aboriginal peoples have had a long interest in the species 
(e.g. Athabasca Chipewyan First Nation 2012, ENR 2013), traditional ecological knowledge 
has become an important part of wood bison monitoring, research and management 
(Moesker 2004, Parks Canada 2010). We reviewed the literature (see Appendix A for 
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search sources) for information directly applicable to monitoring bison distribution, 
population size and trend; where applicable these data are incorporated into the 
appropriate sections of this report.  

Challenges of Data Collection for Clustered Species 
Effective monitoring of wildlife populations requires estimates of key population 

metrics that are reliable and cost-efficient. Achieving such estimates depends critically on 
survey designs that aim to minimize bias and maximize precision by taking into account 
the metric of interest and the biology of the target species. For ungulates, the most 
prevalent survey designs have been aerial-based and generally involve delineating a 
predefined study area into either transects (e.g. Caughley 1977) or blocks (e.g. Gasaway et 
al. 1986). For species with a relatively uniform distribution within the study area, a simple 
transect or random block design may be sufficient to achieve estimates with acceptable 
precision (e.g. coefficients of variation [CV] ≤20%; Pollock et al. 1990). Species that are 
spatially clustered, however, present a number of challenges to such designs. First, spatial 
clustering may result in the target species being absent in a large percentage of transects or 
blocks. Because of this low rate of encounter, estimates of the targeted population metric 
will likely be imprecise because the survey data will contain a high number of zeroes, a 
scenario that confounds many statistical estimation procedures (Thompson 2004). This 
problem may be exacerbated by species that occur in groups. For these species, the group 
rather than the individual becomes the encounter unit and increasing aggregation into 
groups will result in a further lowering of encounter rates (Ioannou et al. 2011). Group-
living can also generate biased estimates of population metrics if large groups are more 
easily detected than small groups (Royle 2008) or if groups are too large to practically 
enumerate all individuals (Cogan and Diefenbach 1998). Biases related to imperfect 
detection and enumeration can be accounted for with specific sampling and statistical 
techniques developed for the metric of interest (see Distribution, Range Size and Habitat 
Selection). Here, we focus on general survey designs that aim to increase estimated 
precision by increasing encounter rates with spatially clustered species.   
 

Sampling Designs for Spatially Clustered Species 
For most wide-ranging animals, surveys focused on a total count or census of all 

individuals is infeasible logistically. Moreover, the resulting estimates of such surveys lack 
measures of precision and therefore are scientifically questionable (Williams et al. 2002). 
Consequently, most surveys employ a sampling design to collect the relevant data and to 
make inferences across the study area. For spatially clustered species, sampling designs 
primarily focus on directing survey effort to where species are, or are predicted to be, to 
increase encounter rates. In general, these designs fall into two categories: those that 
stratify the study area either pre- or post-survey, and those that use adaptive sampling. 
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Stratified sampling designs involve partitioning the study area into regions (or 
strata) based on expected similarities among within-strata sample units (e.g. transects or 
blocks; Lohr 1999). By doing so, a proportion of the total variance is assigned to differences 
among strata. Because this proportion does not contribute to the variance of the targeted 
estimate, estimate precision is increased. Pre-stratification is inherent to the stratified 
random block design of Gasaway et al. (1986), one of the most widely used methods for 
surveying ungulates. In this design, stratification is conducted during a pre-survey flight of 
the study area and sample units are assigned to different strata based on perceived species-
habitat relationships. Pre-stratification can also be done if species-habitat spatial models 
are available for the targeted species within the study area (e.g. Allen et al. 2008). In both 
cases, the success of pre-stratification designs depends on the strength of the species-
habitat relationship; however, even in situations where this relationship is well 
understood, stratification may not result in precise estimates if animals are spatially 
clustered within strata and/or well below the carrying capacity of their habitat (Rachlow 
and Svancara 2006). Stratification can also be done post-survey where sample units are 
grouped based on similar rates of animal encounter or on environmental attributes 
collected during the survey (Anganuzzi and Buckland 1993, Allen et al. 2008). Post-
stratification should be approached cautiously, though, as post-hoc “data snooping” may 
lead to an overestimation of parameter precision (Lohr 1999). 

Stratification designs have been used to estimate population sizes of bison. Rowe 
(2006) employed a stratified random block design to estimate the population size of plains 
bison in northeast BC. The study area consisted of 54 blocks which were divided into two 
strata (high [n=28] and low [n=26] suitability). Because variability among blocks was 
expected to be high due to the grouping nature of bison, all high stratum blocks were 
surveyed, which resulted in an estimate that had an extremely low CV (±2.6%). Kindopp 
and Vassal (2010) used stratification to estimate the population size of wood bison in 
Wood Buffalo National Park (WBNP). In this study, stratification was based on the method 
used to survey four areas within the park. These methods included strip transects, 100% 
coverage, a combination of strip transect and 100% coverage, and reconnaissance flights. 
The reconnaissance flights and the 100% coverage areas were considered minimum counts 
with no accompanying estimates of precision. Nevertheless, this design resulted in an 
estimate with a CV of ±9.3%. Stratification designs have also been used to estimate 
population sizes of other ungulates that occur in groups including elk (Cervus elaphus; 
CV=26-28%; Allen et al. 2008); mule deer (Odocoileus hemionus; CV=27%; Habib et al. 
2013), and elephants (Loxodonta africana; CV=24%; Watson et al. 1969). 

Adaptive sampling designs are another approach for estimating population metrics 
of spatially clustered species (Thompson 2012, Brown et al. 2013). A key advantage to 
these designs is their flexibility, allowing survey effort to be shifted to areas where the 
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target species has been found to occur. In adaptive cluster sampling, an initial set of sample 
units is selected by a probability-based process (e.g. simple random sampling) and for 
those units meeting an a priori threshold (e.g. species presence), additional units in close 
proximity receive further survey effort. If any of these additional units meet the threshold, 
their neighbouring units are surveyed. This process is repeated, allowing for sampled 
clusters to vary in shape and size (Brown et al. 2013). This variability, however, can be a 
drawback from a planning perspective because the final sample size, and therefore survey 
cost, is difficult to estimate. Cost-efficiency of adaptive sampling is further impacted by the 
necessity of surveying “edge” units (i.e., units that are unoccupied surrounding a cluster) 
yet information from these units does not contribute to the targeted estimate (Brown et al. 
2008).   

For estimating metrics of population demography, adaptive cluster sampling has 
had few empirical tests. Khaemba et al. (2001) used empirical distributions of elephants 
and zebras (Equus burchelli) to assess multiple aerial survey designs for estimating animal 
abundance. For both species, estimate precision was improved with adaptive cluster 
sampling. Khaemba and Stein (2002) further assessed the efficacy of adaptive cluster 
sampling for estimating population sizes of kongoni (Alcelaphus buselaphus) and 
wildebeest (Connochaetes taurinus), reporting improved precision in estimates for both 
species but simulations showed an underestimation of true population size for wildebeest, 
which occur in large herds. Beyond large herbivores, Sullivan et al. (2008) found increased 
precision with adaptive cluster sampling when estimating the density of sea lampreys 
(Petromyzon marinus). Smith et al. (2003) and Noon et al. (2006), however, found no 
increase in precision when estimating densities of freshwater mussels and herpetofauna, 
respectively. The efficacy of adaptive cluster sampling likely depends on whether the 
within-cluster variance is similar to the population variance (Smith et al. 1995). For 
herding species like bison, the efficacy of adaptive sampling also likely depends on the 
relative degree of aggregation into groups. If spatial clustering predominantly results in 
most animals occurring in a few large groups and these groups are separated by significant 
distances, then adaptive cluster sampling will be ineffective; conversely, if bison occur in 
many smaller groups that are close in space, then survey efficiency may be improved with 
adaptive cluster sampling.  

Adaptive sampling can be extended to other survey designs. In adaptive two-stage 
sequential sampling, the study area is partitioned into primary sample units which have 
smaller secondary units nested within them (Brown et al. 2008). In the first stage, an initial 
subset of secondary units is drawn equally among primary units using a probabilistic 
sampling process and this subset is then surveyed to determine the number of secondary 
units meeting an a priori criterion (e.g. species presence). In the second stage, additional 
survey effort is proportionally allocated to primary units based on the number of 
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secondary units meeting the criterion. Thus, the design focuses effort to areas having a 
higher rate of occurrence of the targeted species. Conroy et al. (2008) used a similar two-
stage approach to direct sampling effort to where species occur to efficiently estimate 
abundance in spatially clustered populations. In their design, an initial set of sample units 
is surveyed to determine species occupancy. In the second phase, a subset of units 
predicted to be occupied is surveyed to determine within-unit animal abundance. 
Population size is then estimated by modeling the occupancy-abundance relationship. The 
Conroy et al. (2008) design has been successfully used to estimate abundances of 
endangered golden-cheeked warblers (Setophaga chrysoparia; Mathewson et al. 2012) and 
extended to estimate occupancy patterns (Pacifici et al. 2012). The design, however, 
produced mixed results when applied to boreal caribou (Rangifer tarandus caribou), 
primarily due to its dependence on sample units being “closed” (i.e., no 
immigration/emigration) during the first phase of sampling (DeMars and Boutin 2013). We 
also note that the design requires further testing on herding species because precise 
estimates may be difficult to obtain if there is large variation in group size, which would 
result in large variation of within-unit abundances and potentially confound extrapolation 
of the occupancy-abundance relationship to the larger study area.   

Adaptive sampling designs are not limited to estimating metrics of population 
demography and may be particularly useful for monitoring disease incidence, which tends 
to have a clustered distribution (Thompson 1990, Turechek and Madden 1999, Gattone et 
al. 2013). To explicitly model the spatial distribution of disease, adaptive web sampling can 
be used. This design is similar to adaptive cluster sampling but its advantage is that it is not 
confined to encountered aggregations (i.e., stopping at edge units) and allows spatial 
“jumps” to unsampled areas of the study region to more thoroughly map the network of 
disease incidence (Thompson 2013). For bison, such a design may be useful for monitoring 
disease outbreaks such as anthrax.   

Finally, we note that the general survey designs listed above are not mutually 
exclusive and designs may be combined to best survey the target species. For example, 
stratification may be combined with adaptive sampling (Thompson 2012). Prior to 
applying any survey design, particularly those that are novel, we recommend pilot studies 
be conducted to determine whether the design is logistically feasible and cost-efficient and 
is capable of producing estimates with acceptable precision.  

Data Collection Considerations 
Survey designs for monitoring wildlife populations must take into consideration 

potential methods for collecting data on the target species. Historically, monitoring 
ungulate populations has primarily relied on data collected by direct observation  
(e.g. aerial surveys), radio collaring programs or, to a lesser extent, counts of fecal deposits 
(Bailey and Putman 1981, Campbell et al. 2004). Recently, the range of potential methods 
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has expanded due to advances in non-invasive methods, particularly camera trapping 
(Karanth and Nichols 1998) and genetic approaches using fecal DNA (Kohn et al. 1999). 
Specific to ungulates, camera traps have been used to estimate distributional patterns 
(white-tailed deer [Odocoileus virginianus], Fisher et al. 2013, Duquette et al. 2014; brocket 
deer [Mazama spp.], Tobler et al. 2009), abundance or density (Harvey's duiker 
[Cephalophus harveyi], Rovero and Marshall 2009; wild boar [Sus scrofa ], Plhal et al. 2011), 
population trend (white-tailed deer; Duquette et al. 2014), herd composition (white-tailed 
deer; Jacobson et al. 1997, Duquette et al. 2014), and productivity (white-tailed deer; 
Jacobson et al. 1997, Fisher et al. 2013). Most applications of camera traps, however, have 
been on species that are either solitary or live in small groups and it is therefore unclear as 
to whether these demographic parameters could be reliably estimated for species that 
occur in large groups such as bison. In particular, the use of remote cameras may preclude 
estimating population size as quantifying group size of large herds would be likely 
infeasible.  

Demographic parameters of ungulate populations have also been estimated from 
data derived from fecal DNA. This approach may be particularly advantageous for species 
that have low rates of visual detection due to the habitats in which they live (e.g. interior 
forest species) or cryptic behaviour (e.g. nocturnally active species). Fecal DNA approaches 
have been used to estimate population size and structure of elephants (Eggert et al. 2003, 
Hedges et al. 2013), black rhinoceros (Diceros bicornis, Cunningham et al. 2001), mountain 
goats (Oreamnos americanus, Poole et al. 2011), argali (Ovis ammon, Harris et al. 2010), 
boreal caribou (Rangifer tarandus caribou, Hettinga et al. 2012) and Sitka black-tailed deer 
(Odocoileus hemionus sitkensis, Brinkman et al. 2011). In recent years, the application of 
fecal DNA methods has steadily increased. These methods, however, are not infallible as 
genotyping errors can lead to biased estimates if these errors are not explicitly taken into 
account (Lukacs and Burnham 2005, Lampa et al. 2013).   

Demography 
Wildlife management depends on reliable demographic data to inform decision-

making. Such data can include estimates of population size and trend. Understanding 
underlying mechanisms driving population trends may further require data on specific 
vital rates (e.g. age-specific survival and fecundity, Caughley 1974, Gunn and Russell 2008). 
First Nations consider population surveys and monitoring a priority for bison management 
in the Slave River Lowlands (ENR 2013). In this section, we review methods for obtaining 
reliable demographic data, particularly those methods likely to be most appropriate for 
spatially clustered ungulate populations. 

Population Size 
As management actions typically vary relative to estimated population size, effective 

wildlife management requires reliable estimates. Such estimates provide a current 
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assessment of population status – with management actions varying relative to estimated 
size – and represent a key metric for evaluating a population’s ability to withstand natural 
and human-mediated disturbance (Wittmer et al. 2010). Moreover, repeated estimates of 
population size provide direct measures of population trend (see Utilization Distributions) 
and are an effective tool for evaluating management actions. As a consequence, 
considerable research effort has been directed toward developing effective methods for 
estimating population size. Inherent to most methods is the accounting of detection bias; 
that is, the likelihood that not all individuals encountered in a survey are detected 
perfectly.  

Estimating population sizes of spatially clustered species presents additional 
challenges. As noted above, increasing aggregation of individuals into groups will lower 
encounter rates (Ioannou et al. 2011), which may result in small samples sizes that 
confound statistical procedures for estimating population size or decrease estimate 
precision. For species that occur in large groups, biased estimates may result from 
imperfect enumeration of group size (Walsh et al. 2009, Griffin et al. 2013). Also, estimate 
precision may be overestimated because detection of individuals within a group are not 
independent (Boulanger et al. 2004).   

In this section, we review potential methods for estimating population size in 
ungulates (see also Table 1) with a particular emphasis on species that are group-living and 
spatially clustered. We begin with two of the most commonly used methods, sightability 
models and mark-resight, then move on to review distance sampling, thermal imaging and 
non-invasive approaches such as remote camera trapping and mark-recapture methods 
using fecal DNA. We note that selecting a method to account for imperfect detection is only 
one aspect of designing surveys to estimate population size or density. Because most of 
these methods become problematic when detection rates are low, we emphasize the 
importance of sampling design for increasing detection rates to efficiently estimate 
population size of spatially clustered species (Couturier et al. 2013). We further note that 
data for estimating population size does not need to be restricted to one method and 
estimate precision is often improved if multiple sources of data are used (Gopalaswamy et 
al. 2012b). The Athabasca Chipewyan First Nation (2012) has proposed collaborative 
integration of community and science-based monitoring into survey and composition 
counts.  

Sightability Models 
During aerial surveys of ungulates, individual detectability will vary depending on 

environmental and behavioural factors (Samuel et al. 1987, Steinhorst and Samuel 1989). 
To account for this potential bias, sightability models can be used to adjust the raw counts 
of animals observed on survey. These models are usually developed using a sample of 
marked individuals (e.g. radio collars or tags) in a mark-resight framework to estimate a 
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sightability correction factor (Samuel et al. 1987, Steinhorst and Samuel 1989). In most 
applications, correction factors are based on logistic regression models linking detection 
probability to a suite of environmental (e.g. forest cover) and behavioural (e.g. walking 
versus bedding) factors. For herding species, group size can be included as a covariate in 
the model and Walsh et al. (2009) developed a further extension to account for the 
uncertainty associated with estimating group size. These models have been applied to a 
variety of ungulate species including elk (Gilbert and Moeller 2008, McIntosh et al. 2009), 
bighorn sheep (Ovis canadensis; Conroy et al. 2014), mountain goats (Rice et al. 2009), and 
pronghorn (Jacques et al. 2014). To our knowledge, no sightability models have been 
developed specifically for bison. 

While sightability models are conceptually easy to apply, they do have some 
potential drawbacks. First, for species residing in environments where sightability is low 
(e.g. old growth conifer forest), low rates of detection will result in an imprecise estimate of 
population size (Vander Wal et al. 2011, McCorquodale et al. 2013). Second, the 
explanatory data (e.g. percent canopy cover in a given radius around an observed animal) 
has associated measurement error and logistic regression models assume that explanatory 
variables are fixed and measured without error. Any measurement error of the explanatory 
variables can therefore produce biased estimates of population size (Johnson 2008, Walsh 
et al. 2011). Third, sightability models may not translate well through space and time 
(Vander Wal et al. 2011, McCorquodale et al. 2013) and in the case of stratified sampling 
designs, the application of single sightability model across all strata may result in estimates 
of precision that are overly optimistic (Fieberg and Giudice 2008). Thus, sightability 
models likely preform best in the region in which they were developed and as a 
consequence, the additional costs of model development should be considered when 
determining whether to employ a sightability model approach.   

Mark-resight 
One of the more common approaches for estimating population sizes in ungulates is 

mark-resight (Bear et al. 1989, Neal et al. 1993, Wittmer et al. 2005). This method involves 
marking a sample of the target population prior to survey, typically with either radio 
collars (Bear et al. 1989) or by paintball (Mahoney et al. 1998, Skalski et al. 2005a). After 
allowing sufficient time for animals to remix in the population, aerial surveys are 
conducted and the observed number of marked and unmarked animals is used to estimate 
population size. Because animals are usually marked only in an initial session, mark-resight 
methods differ from traditional mark-recapture methods (see below).   

Primary assumptions of mark-resight are that marked and unmarked animals are 
correctly classified, marks are not lost, and marks do not affect the resighting process. 
However, if animals are individually identifiable, resighting probabilities can be allowed to 
vary among individuals (Minta and Mangel 1989, Bowden and Kufeld 1995). Mark-resight 
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methods have also been generalized to include estimators that allow movement to and 
from the survey area between sampling sessions (Neal et al. 1993). All of these estimators 
are contained in program NOREMARK (White 1996). Recently, estimators that allow 
flexible modeling of sightability based on individual covariates (when it is possible to 
identify individual marked animals during the survey) and temporal covariates 
(McClintock and White 2009) have been developed and incorporated into program MARK 
(White and Burnham 1999). The main requirements for mark-resight methods are having 
enough marked animals, and high enough resighting probabilities, to obtain adequate 
precision of estimates, which generally requires multiple surveys to achieve a sufficient 
sample size of resightings.   

Mark-resight methods have been used to estimate population sizes of bison in the 
Yukon on two occasions. Hegel et al. (2012) marked 59 bison using paintballs in July 2009, 
which combined with previously radio collared animals equated to a marked sample size of 
83 animals. They conducted two resighting surveys approximately one and three days after 
marking by paintball. The derived population estimate had good precision (𝑁𝑁�=1,151; 90% 
CI:998-1,355) and resighting rates for the two sessions were 0.39 and 0.37. Jung and Egli 
(2012) used a similar approach within the same study area, marking 101 bison with 
paintballs in July 2011 and conducting a resighting surveys three, four and six days after 
marking (three total resighting occasions). Resighting rates were more variable (0.26, 0.52, 
and 0.33, respectively) but the derived estimate of population size (𝑁𝑁�=1,230; 90% 
CI:1,106-1,385) had greater precision than the estimate of Hegel et al. 2012, perhaps due to 
the increased sample of marked animals and extra resighting survey. 

We note that for herding species like bison, mark-resight estimates have the 
potential to be biased because animals within a group do not have equal and independent 
probabilities of being marked and resighted (Skalski et al. 2005a). This bias can be 
particularly problematic if animals do not remix among groups after marking or if fidelity 
to a particular group size is high. To reduce such potential bias, animals should be marked 
when group sizes are smallest and animals within groups should be marked in proportion 
to group size (Skalski et al. 2005a). 

Capture-Mark-Recapture 
For estimating population size in difficult-to-observe wildlife species, capture-mark-

recapture (CMR) is the most commonly used method in ecological studies. As with mark-
resight, CMR involves capturing and marking an initial sample of individuals from the 
target population; however, in most CMR applications new individuals captured during 
subsequent resampling occasions are also marked. The recapture data also known as 
encounter histories, are used to estimate detection rates and derive estimates of 
population size. Model formulations have progressed beyond simple closed population 
models (i.e., no births, deaths, immigration or emigration) to include ‘robust’ designs that 
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incorporate demographic data such as survival (Pollock 1982). Most current modeling 
approaches are contained in the omnibus software program MARK (White and Burnham 
1999). Design is critical to the success of CMR experiments as precision is influenced by the 
proportion of the true population that is marked, the number of animals recaptured and 
the number of sampling sessions (Pollock et al. 1990, Rees et al. 2011).  

Until recently, classic CMR methods have rarely been used to estimate population 
sizes of ungulates due to the difficulty and expense of capturing large animals. In the last 
few years, however, the use of CMR approaches to estimate population size in ungulates 
has increased due to the development of fecal-based DNA methods that can identify – and 
hence ‘mark’ – individuals based on genotype. CMR approaches have been used to estimate 
population size in mountain goats (Poole et al. 2011), elephants (Hedges et al. 2013), 
boreal caribou (Carr et al. 2012, Hettinga et al. 2012) , and argali (Ovis ammon; Harris et al. 
2010). Compared to other approaches where the animals are directly observed, fecal-based 
DNA methods are relatively non-invasive and obtaining sufficient sample sizes may require 
less effort because fecal deposits are generally easier to find and collect versus sighting the 
actual animals, particularly for cryptic and elusive species. The main drawbacks to this 
approach are i) the costs associated with genetic analyses (Harris et al. 2010, Carr et al. 
2012); and ii) the necessity of multiple sampling occasions combined with the time 
required for genetic analyses equates to a comparatively long time interval between survey 
initiation and the derivation of the population size estimate. Within NWT bison range it 
may be costly to obtain the required intensity and optimum spatial distribution of samples 
because of difficult access.  

CMR methods have recently been extended to allow estimation of animal densities 
by incorporating spatial information. This framework, known as spatially explicit capture-
recapture (SECR), uses the spatial coordinates of capture locations to model the spatial 
distribution of individual home ranges and fits a detection function to the mark-recapture 
that estimates the decline in detection probability with increasing distance from an 
individual’s home range center (Efford 2004, Efford and Fewster 2013). Using this 
information, population density on the study area is estimated without the issues of 
“closure violation” that challenge estimation with traditional closed CMR models (Otis et al. 
1978). Early empirical testing suggests that SECR models have similar or better statistical 
performance than CMR models (e.g. higher precision; Blanc et al. 2013, Efford and Fewster 
2013). The main potential issue with SECR is highly non-circular home ranges, which can 
create bias (Ivan et al. 2013a, b); however, this bias can be offset if covariates are used to 
account for variation in movement rates and/or densities due to habitat or geographic 
features. The SECR approach has been adapted to line transect sampling (Efford 2011) but 
as yet the approach has not been tested for estimating ungulate densities.  
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CMR estimators for animal density have also been developed that utilize 
information from radio collared animals. Ivan et al. (2013a) developed an estimator that 
uses estimates of the mean location of animal detection on the sampling grid (using mark-
recapture methods) to estimate residency (using information from radio-collared animals). 
This approach provides an estimate of density that can be compared with SECR methods. 
Simulation studies suggest that it provides robust inference; however, it does require that a 
substantial number of animals are collared in the study area. 

Aerial Survey Strip Transect Sampling 
Strip transect methods have been used in previous bison aerial surveys in the NWT 

and continue to be used in barren-ground caribou surveys (Gunn and Russell 2008). Strip 
transect surveys assume that all animals are sighted within a limited strip of the survey 
plane (usually 400 m on each side of the plane) with all other observations beyond the 
strip not being used for estimates. The estimator for abundance then becomes similar to a 
quadrat or block survey estimator (Krebs 1998) which is simply the number of animals 
counted divided by the proportion of the survey area covered by the strip transects. The 
strip transect method is appealing in terms of simplicity and ease of instruction for field 
observers. One particular advantage is that it allows efficient counting of animals which can 
be advantageous for species at higher densities such as caribou calving ground surveys. 
However, it is not statistically efficient in that all observations beyond the survey strip are 
not considered (Burnham and Anderson 1984). In addition, the assumption of perfect 
sightability within the survey strip may be violated especially in areas of vegetation cover 
which will lead to negatively biased estimates. Double observer methods (Buckland et al. 
2010) which estimate sightability using data from two observers on each side of the plane 
can be used to estimate sightability on the survey strip to reduce bias when sightability is 
<1 on the survey strip. 

Aerial Survey Distance Sampling 
Distance sampling has been recently applied to bison and other ungulate 

populations to provide enhanced abundance estimates from aerial transect surveys. In 
most applications, a line transect design is used where the distance from the line to a 
detected individual or group is measured and a detection function is estimated to 
determine the size of the area sampled (Buckland et al. 1993, Thomas et al. 2010). 
Compared to mark-resight and mark-recapture approaches, a primary advantage to 
distance sampling is its efficiency because data can be collected and estimates calculated 
from a single survey. In addition, distance sampling does not require that individual 
animals are marked, which therefore reduces overall cost of surveys. 

Distance sampling requires that several key assumptions be met. The first is that all 
individuals centered on the transect (or specified distance from the survey plane to account 
for the blind spot under the plane) are detected perfectly (i.e., detection probability = 1.0 at 
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a distance of 0), although recent extensions relax this assumption by incorporating either 
sightability models (Peters et al. 2014), double observer methods (Conn et al. 2012), or 
mark-recapture approaches (Borchers et al. 1998, Laake et al. 2008). If habitat is open and 
sightability is high then this assumption is probably met if observers are focusing their 
primary attention on areas closest to the plane. If terrain or vegetation is variable, if 
observers’ skill in detecting bison is limited, or if observers do not concentrate their 
attention on the “zero distance” closest to the plane (even if there are nice, open areas in 
the middle distance where they are more likely to see bison), then this assumption may be 
violated. The approach used to estimate detection probability near the plane depends on 
factors influencing sightability. If it can be assumed that all bison near the plane have a 
reasonable sighting probability then double observer methods can be used to estimate 
sighting probability by comparing observations of the two observers on each side of the 
plane. This approach works best if the two observers cannot communicate their 
observations, but can also be applied if communication occurs (Buckland et al. 2010). If 
vegetation or other factors makes some bison difficult to observe then mark-resight or 
sightability models with collared or marked bison can be used to estimate sighting 
probability near the plane and this estimate can be used to scale the distance sampling 
detection function (Peters et al. 2014). 

Accurate measurement of the detection distance is also critical to distance sampling 
as measurement error can produce biased estimates of population size or density 
(Marques et al. 2006, Alldredge et al. 2007). Wing strut markers measure distance bins 
from the survey plane provides one approach to efficiently estimate distances from the 
survey plane (Buckland et al. 2004a). However, this approach restricts the fitting of 
detection functions and modeling of covariates in the analysis stage since the number of 
distance bins is usually restricted to four or five bins. An alternative approach is to measure 
the angle of groups and altitude above ground level for the survey plane and from this 
estimate distance (Laake et al. 2008). This approach allows continuous estimates of the 
distance of groups from the plane but also requires a radar altimeter that is cross 
referenced with field data. Previous surveys of bison in the NWT have flown the survey 
plane over each bison group and used GIS waypoints of groups from the survey line to 
estimate distance. This approach is more time consuming than the bin approach but does 
allow exact counts of groups and continuous distance measurements.   

Distance sampling directly models the effect of different group sizes on sightability 
through the use of a group size covariate or use of regression-based methods (Buckland et 
al. 1993, Thomas et al. 2010). This approach allows detectability to vary with group size 
given that often larger groups are easier to detect than individuals. Both distance sampling 
and strip-transect sampling are potentially vulnerable to sampling situations where a large 
number of individuals appear in groups which results in variation between individual 
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transects and higher survey variance. Stratification can be used to confront large-scale 
differences in density, however, this approach will be limited if aggregation of individuals 
causes small-scale density variation. Density surface modeling (Miller et al. 2013) is a 
newer method that allows the use of covariates to describe variation in density within 
study areas, which can improve estimate precision as well as provide inference about 
factors affecting abundance (as discussed later in the report). 

Similar to other modeling approaches, distance sampling is sensitive to small 
sample sizes, generally requiring >60 individuals or groups to be encountered to effectively 
estimate the detection function (Buckland et al. 2001) and achieve acceptable estimate 
precision (Seddon et al. 2003, Wegge and Storaas 2009, Williams and Thomas 2009). 
Combining multiple years of data can potentially offset low sample sizes from single 
surveys as long as methods are standardized and appropriate covariates are collected 
(Buckland et al. 2004). 

Distance sampling has been used to estimate population sizes and densities of a 
variety of ungulate species including moose (Alces alces; Peters et al. 2014), Dall’s sheep 
(Ovis dalli; Schmidt and Rattenbury 2013), mule deer (Koenen et al. 2002), and blue duiker 
(Cephalophus monticola; Waltert et al. 2006). Specific to herding species that are spatially 
clustered, distance sampling has been used to estimate densities of elephants (Kumara et 
al. 2012), chiru (Pantholops hodgsoni; Bårdsen and Fox 2006) and onager (Equus hemionus 
onager; Hemami and Momeni 2013) , all with acceptable rates of precision (CV <20%). For 
bison, Boulanger (2014a) used distance sampling in a post-hoc stratified sampling design 
to obtain density estimates for the Mackenzie wood bison range. Preliminary results 
suggest that acceptable rates of precision can be achieved for both population size and 
density estimates. We discuss distance sampling including recommendations to improve 
precision in Part C of this report. 

Aerial Surveys Using Thermal Imaging 
Thus far, all methods for estimating population size attempt to account for imperfect 

detection of all individuals, yet these methods produce imprecise estimates when overall 
detectability is low. For species residing in areas where sightability is low, thermal imaging 
technology has been used to increase detection rates (Bernatas and Nelson 2004, Kissell 
and Nimmo 2011, Carr et al. 2012, Franke et al. 2012). In most ungulate applications, 
surveys are conducted by aircraft using a line-transect sampling design where a thermal 
imaging camera is mounted on the underside of the aircraft to detect heat emitted from 
animals situated along each transect. Camera resolution is generally sufficient to 
discriminate among species that differ substantially in size but additional visual imagery 
may be required to discriminate among similarly sized species (Franke et al. 2012).  
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In trials using radio marked animals, estimates of detection rates using thermal 
imagery have generally been high (e.g. 89% for bighorn sheep, Bernatas and Nelson 2004; 
95% for white-tailed deer, Kissel and Nimmo 2011). Thermal imaging technology has also 
been used in conjunction with distance sampling to produce estimates with acceptable 
precision (Bernatas and Nelson 2004, Carr et al. 2012). These applications, however, have 
been conducted at small spatial scales (Bernatas and Nelson 2004, Carr et al. 2012) and the 
utility of thermal imaging surveys for estimating population size over wide geographic 
areas has not been tested. One potential drawback to extending thermal imaging surveys to 
larger spatial extents is the narrow field of vision of the camera, which typically yields a 
transect width of ~100 m (Kissell and Nimmo 2011, Franke et al. 2012). For wide-ranging, 
spatially clustered species, this narrow transect width may necessitate extensive flying 
time – and hence survey cost – to achieve estimates with acceptable precision (Ogutu et al. 
2006). Thermal imaging has also not been tested on species that occur in large groups (i.e., 
>20). With a narrow strip width, effectively enumerating all individuals in large groups 
using thermal imagery may be problematic.   

Counts of Fecal Deposits 
Using counts of fecal deposits as an index of abundance has a long history in the 

management of ungulates (Neff 1968). A central assumption in this method is that the 
count of fecal deposits in a given time period is positively correlated to animal density 
(Forsyth et al. 2007). Converting fecal counts to an estimate of abundance requires a priori 
knowledge of a species’ daily defecation rate and, when the time period is unknown or 
undefined, an understanding of fecal decay rates (Neff 1968, Campbell et al. 2004). Without 
this information, fecal counts should be viewed as an index of relative abundance rather 
than an estimate of true abundance per se. Abundance estimates derived from fecal counts 
are also likely influenced by animal movement rates and estimates may be biased if 
individuals move into or out of the study area during the sampling interval (i.e., the 
population is not ‘closed’; Gopalaswamy et al. 2012a). Fecal counts have generally been 
used for environments that have low sightability (e.g. tropical forests; Merz 1986). The 
method, however, is still susceptible to detection bias because not all fecal deposits will be 
detected; therefore, sampling designs that incorporate double-observer approaches may be 
necessary (Nichols et al. 2000).  

A primary drawback to using fecal counts is that data collection is labour intensive, 
particularly over large spatial extents. Moreover, in study areas that are largely 
inaccessible by ground-based means (e.g. roads or by foot), extensive helicopter use may 
still be required and as a consequence may be more expensive than standard aerial survey 
approaches (Forsyth et al. 2014).   
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Remote Camera Trapping 
The use of remote camera traps for estimating population size or density has been 

primarily restricted to carnivore species, particularly those with individually identifiable 
markings that allow camera trap data to be used in a mark-recapture framework (Karanth 
and Nichols 1998, Silver et al. 2004, Long et al. 2008). For many ungulate species, 
individual recognition from photographs is not possible, which has limited the use of 
camera trap designs for estimating ungulate population size or density. However, using 
horn measurement ratios (relative to the distance between the eyes) and a likelihood-
based algorithm to calculate a matching score between pairs of photographs, researchers in 
Prince Albert National Park were able to estimate population size through photographic 
mark-recapture (Merkle and Fortin 2014). Rowcliffe et al. (2008) also developed a 
modeling framework – the random encounter model (REM) – that eliminates the 
requirement of individual recognition to estimate animal density. Their approach models 
the underlying detection process using expected movement rates and group size of the 
target species. While the method has not been widely tested, Zero et al. (2013) compared 
the REM approach to distance sampling for estimating densities of Grevy’s zebra (Equus 
greyvi). The two methods produced similar density estimates with the REM estimate 
having higher precision (CV: 27% for REM; 61% for distance sampling).   

Compared to other methods, camera trap surveys may have higher initial costs 
because of the expenses associated with purchasing and deploying cameras (Zero et al. 
2013). For short-term surveys, these costs may restrict the application of camera trap 
designs to elusive species residing in environments with low sightability. For longer term 
monitoring, however, camera trap designs may be an efficient, cost-effective method for 
estimating population size, even for species that may be easily observable. We note that the 
REM method has not been tested on species such as bison that live in large groups and 
there may be potential for estimate bias and precision to be affected by high variation in 
group size.  
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Table 1. Comparison of methods for estimating population size and/or density of wildlife 
populations with an emphasis on applications to ungulate species. 

Method Framework Advantages Disadvantages 
Sightability Model Sightability is 

modeled as a function 
of environmental and 
behavioural 
covariates. 

Sightability correction 
factors can be applied 
to raw counts to 
derive population 
estimates after a 
single survey; 
therefore may be 
relatively cost 
efficient (c.f. CMR and 
mark-resight) 

Imprecise when 
sightability is low. 
Measurement error of 
explanatory variables 
can induce bias. 
Requires marked 
animals to estimate a 
sightability model if 
none exists. 
Sightability models 
may not translate well 
through space and 
time. 

Mark-Resight Animals are marked 
during an initial 
session followed by 
resighting sessions to 
estimate detection 
probabilities.  

Extensive use in 
ungulates and a 
variety of models are 
available. 
Estimates can be 
derived after each 
resighting session. 
Can be used to 
account for low 
sightability in closed 
habitats 

Requires a segment of 
the population be 
individually marked. 
May require a high 
number of animals to 
be marked. 
For herding species, 
non-independence of 
resighting 
probabilities may bias 
estimates. 
Sensitive to low 
resighting 
probabilities. 
Necessity of multiple 
resighting surveys 
may equate to 
relatively high survey 
cost (c.f. distance 
sampling). 

Capture-Mark-
Recapture (CMR) 

Animals are captured, 
marked and 
recaptured over 
multiple sessions to 
estimate detection 
probabilities.  

Extensive literature 
support and a wide 
variety of models are 
available. 
Spatially explicit 
methods (SECR) can 

Requires marking of 
individual animals 
Necessity of multiple 
recapture sessions 
may lead to high 
relative cost. 
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Method Framework Advantages Disadvantages 
estimate density. 
 

For fecal DNA-based 
methods, there may 
be a long time interval 
between data 
collection and 
estimate derivation. 

Strip Transect 
Surveys 

For ungulates, 
generally uses a line-
transect design where 
animals are only 
counted within a 
specified strip from 
the survey plane. 

Provides an estimate 
of density as the count 
of animals divided by 
the area sampled by 
strip transects. 
Estimates can be 
calculated after a 
single survey (c.f. CMR 
above), therefore may 
be relatively cost-
efficient. 

Assumes all animals 
are sighted within the 
strip which is unlikely 
in many habitats. 
Does not use data 
from animals sighted 
outside the strip and 
therefore is not as 
efficient as distance 
sampling. 

Distance Sampling For ungulates, 
generally uses a line-
transect design where 
detectability is 
estimated as a 
function of distance 
off the transect. 

Provides an estimate 
of density as effective 
transect width is 
empirically estimated. 
Estimates can be 
calculated after a 
single survey (c.f. CMR 
above) therefore may 
be relatively cost-
efficient. 

Sensitive to small 
sample sizes. 
Requires accurate 
measurement of 
detection distances. 

Thermal Imaging Thermal imaging 
camera is mounted to 
aircraft while 
conducting aerial 
surveys 

Increases detection 
rates in environments 
with low sightability. 

Has not been tested at 
large spatial extents. 
Narrow transect 
width may equate to 
high survey costs for 
spatially clustered 
species. 

Fecal Deposit Counts Fecal deposits are 
counted along 
transects  

Suitable for species 
with low sightability. 

Requires knowledge 
of fecal deposition and 
decay rates. 
Labour intensive.  
May be biased by 
movements on to / off 
of the sampling area. 
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Method Framework Advantages Disadvantages 
Remote Camera 
Trapping 

An array or grid of 
cameras is deployed 
and picture data is 
generally used in a 
mark-recapture 
framework. 

Less invasive than 
other approaches. 
May increase 
detection rates for 
cryptic species. 
May be cost-efficient 
for long-term 
monitoring. 

Often requires 
recognition of 
individual animals. 
High initial costs. 
Limited testing on 
herding ungulates. 

 

Population Trend 
A primary objective of wildlife management is determining population trend, 

defined as the direction and magnitude of changes in population size through time. 
Population trend can be estimated by both direct and indirect methods. In direct 
approaches, trend is estimated by changes in population size estimates obtained from 
sequential surveys. Indirect methods rely on information such as age ratios and vital rates 
such as survival to infer trend. Of the two approaches, direct approaches are conceptually 
easier to understand because interpreting indirect estimates of trend is difficult if there is 
not a baseline estimation of population size for reference. Consequently, initial efforts 
should be made to estimate population size – and periodically thereafter – to corroborate 
indirect trend measurements.   

Body condition measures such as body fat, animal size, and observations of 
movement ability (e.g. walking with a limp) have been used by indigenous cultures to infer 
information about habitat conditions, which are then linked to population dynamics 
(Kofinas et al. 2003, Parlee et al. 2014). For example, Dene hunters assess the condition of 
internal organs to assess for diseases that if widespread, give an indication that the 
ecosystem is “out of balance” (Parlee et al. 2014). Information gained from body condition, 
however, may be biased because hunters target individuals deemed to be in good condition 
(Kofinas et al. 2003, Wray and Parlee 2013). Moreover, body condition may not directly 
relate to whether a population is increasing or decreasing (Moller et al. 2004), because of 
time lags or lack of synchrony between changes in body condition (from density 
dependence) and population responses. Disease outbreaks may further confound 
inferences between body condition and population trend.  

Repeated Abundance Surveys 
Monitoring trend by direct measures requires repeated estimates of population size 

such that: 

λ =  
𝑁𝑁�𝑡𝑡+1
𝑁𝑁�𝑡𝑡
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where λ is the estimated population trend, 𝑁𝑁�𝑡𝑡 is the initial estimated population size and 
𝑁𝑁�𝑡𝑡+1 is the estimated population size at the next time step. Values of λ>1.0 indicate an 
increasing population while those <1.0 indicates a decline. For time steps spanning 
multiple years, an estimate of the average λ can calculated by: 

𝑁𝑁�𝑡𝑡 ∗  λ𝑥𝑥 =  𝑁𝑁�𝑡𝑡+𝑥𝑥 

where x is the time span in years. Direct estimation of trend can further be estimated by 
using regression analysis (e.g. Ottichilo et al. 2001) where the slope of the relationship 
between population size and time is the intrinsic rate of population increase (r), which can 
be transformed to an estimate of λ by calculating 𝑒𝑒𝑟𝑟 . The method to estimate trends will 
depend on management objectives and the number of survey points available to estimate 
trend. If only two surveys have been conducted then a t-test can be used to determine if 
abundance has changed significantly between surveys (Caughley 1977, Thompson et al. 
1998). Regression methods can be used to estimate actual trend in the population. The 
usual approach for this is log-linear modeling with an underlying model of exponential 
population growth (Buckland et al. 2004a) where 𝛿𝛿𝑡𝑡  is sampling variation and 𝜖𝜖𝑡𝑡  is 
biological variation or process variance: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒�𝑁𝑁�𝑡𝑡� =  𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛿𝛿𝑡𝑡 +  𝜖𝜖𝑡𝑡 

The estimate of trend (λ=Nt+1/Nt) is equal to the exponent of 𝛽𝛽1. For this procedure 
abundance estimates will usually be weighted by the inverse of their variance to account 
for differences in survey variance (Brown and Rothery 1993). Alternatively, generalized 
linear models (McCullough and Nelder 1989) with a log-link can be used to add flexibility 
about error distributions. Covariates can be added to further explain temporal variation in 
trends. If time series are long enough it is also possible to estimate process variance (𝜖𝜖𝑡𝑡) 
separate from sampling variance (𝛿𝛿𝑡𝑡) (Thompson et al. 1998). 

Another approach is using Bayesian state-space models (Humbert et al. 2009) that 
can better account for process and observation error, uneven time series as well as auto 
correlated trend estimates. This approach involves the use of Markov-Chain Monte Carlo 
methods which are more complex than likelihood methods. However, simulation results 
suggest it may be more robust to various sampling and biological issues with trend data. 

Using Composition Counts and/or Telemetry Data 
Population trend in ungulates can also be estimated by indirect methods if 

composition and telemetry data are available. Two common approaches are age ratios and 
the “R/M” equation developed by Hatter and Bergerud (1991). Age ratios typically consist 
of juvenile:adult female (J:AF) ratios collected during late-winter. As an index of population 
trend, J:AF ratios have been criticized because they can mask the underlying mechanisms 
driving population change and opposite trends can produce the same ratios (Caughley 
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1974). In particular, McCullough (1994) suggested that ratios can mask changes in adult 
female survival, which has a strong influence on ungulate population trend (Gaillard et al. 
2000). Further, temporal changes in the female-offspring bond and seasonal changes in 
offspring sightability can bias age ratio estimates (Bonenfant et al. 2005). Nevertheless, 
recent analyses suggest that age ratios can reliably track population trend in elk (Harris et 
al. 2008, Christianson and Creel 2014). This correlation, however, may not hold for other 
species that differ in age structure or have delayed reproductive maturity (Bender 2006, 
Cameron et al. 2013). Because of these uncertainties, age ratios should periodically be 
augmented by other data sources to effectively monitor trend (McCullough 1994, Bender 
2006).  

The R/M equation also uses J:AF ratios but these data are incorporated with adult 
female survival data to estimate population trend. In its basic formulation, the R/M 
equation calculates λ by: 

λ =
(1 − M)
(1 − 𝑅𝑅)

 

 
where M is the finite annual mortality rate and R is the finite annual recruitment rate or 
proportion of recruits in the population (Hatter and Bergerud 1991). The numerator is 
usually derived from Kaplan-Meier estimates of survival (1–M) from radio collared females. 
The R/M equation has been used extensively to monitor trend in caribou populations 
(Hervieux et al. 2013, Larter and Allaire 2013a) and has been applied to moose, elk and 
deer (Hatter and Janz 1994, Kunkel and Pletscher 1999). While this approach is appealing 
in the terms of simplicity, it does make a set of assumptions regarding the symmetry of 
survival rate and recruitment estimates. For example, it assumes that annual J:AF ratios are 
an unbiased estimate of annual recruitment so that recruitment from this measure is 
directly comparable to annual rates of female survival (Wasser et al. 2012). The original 
formulation of the equation also assumes that juveniles are recruited to the population at 
one year of age. DeCesare et al. (2012a), however, showed that violations of this 
assumption (e.g. for species with delayed reproductive maturity) are not problematic if the 
recruitment is expressed as a ratio of the number of female juveniles to the total number of 
females in the population, i.e.: 

𝑅𝑅 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  

This reformulation was shown to produce λ values equivalent to those estimated 
from matrix population projection models (Morris and Doak 2002). 

Other indirect methods for estimating population trend require more intensive data 
inputs. For example, trend can be estimated using demographic models such as those used 
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in population viability analyses (Boyce 1992, Morris and Doak 2002) or life table analyses 
(Krebs 2008, McMahon et al. 2011). Dawson and Hone (2012) used a modified Lotka 
equation, as developed by Eberhardt et al. (1994) to estimate trend in feral horses. This 
equation requires inputs on age at first reproduction, annual adult survival, survival to age 
at first reproduction and fecundity. If data have been collected via fecal-based DNA 
methods, CMR models such as the ‘robust’ design (Pollock 1982) and Pradel approach 
(Pradel 1996) provide a powerful framework by simultaneously estimating yearly 
population size, trend, apparent survival, and emigration / immigration (e.g. Hettinga et al. 
2012).   

Inferences from multiple data sources 
We note that if there are baseline estimates of population size, survival estimates, 

and recruitment rate estimates then it is possible to fit multiple-data source models to 
further model demography and population trends (Buckland et al. 2004, Boulanger et al. 
2011). These approaches do not require annual surveys or annual measurements from any 
of the demographic indicators. They can accommodate sample biases with indicators, such 
as the effects of differential survival of juveniles and adults on J:AF ratios, and can also 
incorporate harvest data (Boulanger et al. 2011). This approach utilizes all the data sources 
in a unified analysis therefore maximizing inference when compared to stand-alone 
interpretation of single data sources. 

Inference from Changes in Distribution 
We do note that management objectives often include monitoring trends in species 

distribution. Changes in distribution can be monitored through repeated occupancy 
surveys and recent advancements in occupancy methods include dynamic multi-state 
models that incorporate estimates of site colonization and extinction (MacKenzie et al. 
2006, Bailey et al. 2014). Changes in distribution often reflect changes in population size 
(He and Gaston 2000). This relationship however, is not straight-forward and is 
particularly problematic across large landscapes and for species that are spatially clustered 
(He and Gaston 2007, Hui et al. 2009). For example, for group-living species the number of 
animals per group may decline while the number of groups on the landscape may stay 
relatively constant; thus, a population could decline while its spatial distribution remains 
unchanged (McLellan et al. 2010). This process would result in a high-risk strategy of 
monitoring population change because change may not be detected until a rapid 
contraction in distribution is observed. Occupancy models that consider counts of animals 
rather than presence-not detected (Royle and Nichols 2003) may be more sensitive to 
changes in group size; however, the use of this approach assumes that individual groups 
can be counted adequately during surveys. For wide-ranging species with annual home 
ranges much larger than occupancy plot sizes, short-term changes in occupancy may reflect 
temporal variation in annual home range use rather than distributional changes related to 
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changes in abundance. Also, with respect to plot size, unbiased occupancy estimation 
requires a large “plot size” (Efford and Dawson 2012) and thus inference from occupancy 
will indicate larger temporal changes in distribution. Therefore, tracking changes in 
occupancy as a surrogate for population size may result in limited power to detect smaller, 
short-term change.   

Population Composition 
Wildlife managers commonly collect herd composition and age and sex ratios to 

assess status and demographic trends of ungulate populations (McCullough 1994, Skalski 
et al. 2005b, Bender 2006, Harris et al. 2008). Long-term conservation targets for ungulate 
populations often include ratio data (Lammers et al. 2013). For ungulates, ratios commonly 
collected include juveniles, yearlings, and bulls:100 females. These data may be used to 
determine whether population objectives are being attained (e.g. post-harvest escapement 
of males), to track productivity, and, as noted in the previous section, can be used to help 
assess population trend (Harris et al. 2008, Christianson and Creel 2014).   

Most sustained-yield management strategies attempt to affect population trend, 
population age structure, and adult sex ratios (Bender 2006). These three demographics 
commonly are used as management goals and are each a function of population 
productivity and adult mortality rates. Each of these parameters (productivity, mortality) 
can be determined annually from ratio data if ratios are correctly interpreted and collected 
during biologically meaningful periods when biological bias can be minimized and when 
ratios can be meaningfully applied to the population as representative of true production, 
recruitment, or mortality. Use of estimators designed to accommodate heterogeneity of 
sighting frequencies among animals can reduce bias in estimates (e.g. Bowden’s estimator; 
Bowden and Kufeld 1995, Weaver and Weckerly 2011).  

Timing of Composition Surveys 
Properly timed, ratio data can provide substantial information beyond trends on 

which to base management decisions. Juvenile:female ratios obtained soon after the bulk of 
birthing can provide substantial information on potential mechanisms affecting 
productivity, e.g. a low ratio could indicate low fecundity or high rates of predation on 
neonates. These data also provide a baseline to determine potential periods where juvenile 
mortality might be high (i.e., is mortality more of a concern during the neonate period or 
overwinter?). Juvenile ratios collected during pre-weaning potentially have bias because in 
many species of ungulates juveniles are not reliably seen with adults during the pre-
weaning period (“hiders”) (Bender 2006). Bison calves are generally not “hiders” and may 
be visible soon after birth (following the “follower” strategy). After weaning even “hider” 
juveniles habitually travel with adults and thus unbiased juvenile ratios are more readily 
available. These changes in relationship between females and their juveniles can result in 
seasonal bias in juvenile:female ratios (Bonenfant et al. 2005).   
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Recruitment of one-year-olds into older age classes can typically be collected 
concurrent with productivity ratios (Bender 2006). It is important to consider that 
collecting recruitment ratio data in mid- or late winter, typical timing for some ungulate 
populations, may not capture potentially significant juvenile mortality associated with late 
winter and the immediate winter–spring interface. Female bison generally don’t reach 
reproductive age until three to four years of age, and this delay could affect the utility of 
juvenile:cow ratios for monitoring trend. Specific to bison, Bradley and Wilmshurst (2005) 
observed that the ratio of yearlings/100 cows to calves/100 cows appeared to be a strong 
indicator of population trend. However, use of ratios in management has been criticized 
because the individual components of the ratio can confound its interpretation, particularly 
when used to assess population trend (see discussion in Population Trend section above, 
Caughley 1974, 1977, McCullough 1994, Bonenfant et al. 2005). As a consequence, ratio 
data should periodically be augmented with other data sources to effectively monitor trend 
potentially through the use of an integrated population model (Boulanger et al. 2011). 

Sampling considerations 
Social grouping patterns, sexual segregation, and differences in detectability among 

age-sex groups and among years can often result in biased composition data (White et al. 
2001, Mitchell 2002, Bender 2006, Gunn and Russell 2008), especially if sampling 
techniques do not allow easy access to herd range. Unrepresentative distribution of 
sampling effort can be an issue; for example, bison outside of the main herds at the edges of 
the range tend to be bulls which frequently travel alone (Mitchell 2002). Differences in 
calf:female and adult sex ratios among different density strata were evident in West 
Greenland caribou, with low density stratum having higher calf ratios and lower bull 
ratios – these were likely sampling issues rather than density dependence issues (Poole et 
al. 2013). In caribou this sex- and age-biased distribution is compounded if the count is 
delayed until the onset of spring migration (Valkenburg et al. 2002). One approach to 
ensure representative sampling of a population is to allocate sampling effort based on 
relative densities from reconnaissance or population surveys or some other means of 
assumed population distribution (Gunn and Russell 2008).   

Differences in bias and precision can occur between methods used to collect 
composition data (ground or aerial surveys; Woolley and Lindzey 1997). Composition data 
collected from the ground may not be as accurate as data collected using helicopters 
(Bender et al. 2003). Accuracy of age-sex classification should also be tested. 
Misclassification of mountain goats kids and yearlings and sexes between adults during 
aerial surveys was evident, resulting in inaccurate conclusions of ratios (Gonzalez-Voyer et 
al. 2001). Similarly confusion occurs with other ungulate species (Dau 2005). Classification 
of bison into seven age and sex classes (see below) can ostensibly involve misidentification, 
especially among bull bison categories (Larter and Allaire 2007). 
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Accurate estimation of population composition can be affected by sample size. 
Calculation of variance associated with the estimated ratios is important to demonstrate 
the range of possible values (Bender 2006), and can be used to assess the survey effort 
required to obtain statistically defensible composition data for management objectives (e.g. 
Poole et al. 2013). We provide a case study that estimates variance for composition surveys 
in Data Sources. 

Age- and Sex-specific Vital Rates 
Vital rates (also called demographic rates) are those components that collectively 

determine the rates of change – the mechanisms for why populations change in size (Gunn 
and Russell 2008). The rate of change is the outcome of how many animals are born (birth 
rate), how many die (death rate) and how many disperse from their birth population 
(egress or ingress). As such, they can be useful additional data to support whether a 
population is changing in size as well as indicating the mechanism. 

For ungulate populations, vital rates are typically estimated from radio-collared 
individuals or from ratio data, such as juveniles:100 females (Lammers et al. 2013). Ratios 
can be used to monitor productivity and calf survival (for example comparing neonate 
ratios to fall and late winter ratios), and to compare male and female survival. As noted in 
previous sections, inferring demographic trends from ratio data should be done cautiously 
as ratios can mask important trends in either the numerator or denominator age classes 
(Caughley 1974, McCullough 1994). For ratios using adult females in the denominator, an 
estimate of adult female mortality is needed (Caughley 1977, McCullough 1994). As adult 
female mortality is annually less variable than calf mortality, Harris et al. (2008) 
demonstrated that juvenile:cow ratios can track calf survival in elk; however, the authors 
cautioned that age ratios alone should not be used to track trends in population size. 

Birth rates 
Birth rate (or natality) is the mean number of live births per female per year, which 

can be further expressed by age class. For many ungulate species, fecundity tables are 
usually derived from harvested animals, which in northern bison populations is unlikely to 
produce sufficient annual sample sizes. Birth rate, birthing location and peak birthing 
period can also be estimated by movement analyses of radio-collared females (Testa et al. 
2000, Kelleyhouse 2001, Vore and Schmidt 2001, DeMars et al. 2013) although these 
analyses may be problematic for herding species where individual movement rates are not 
independent. Delays in the peak birthing period can indicate density dependent effects 
affecting female body condition (Skogland 1984).  

Pregnancy rate, which differs from the actual birth rate, can be derived from blood 
serum progesterone levels (Haigh et al. 1982). Progesterone and estrogen conjugates from 
collected fecal pellet samples during late pregnancy stages can be used as a non-invasive 
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method of detecting pregnancy status (Morden et al. 2011). Pellet collections can be 
screened using genetic testing to eliminate males from the sample. Pregnancy rates vary 
among years in caribou populations (Cameron 1994), suggesting that pregnancy rates 
could be annually monitored to determine whether changes in juvenile:female ratios reflect 
changes in pregnancy or changes in calf and adult female survival (Gunn and Russell 2008).   

Survival 
Survival rates are a key demographic factor dictating population trend in most 

wildlife populations (Morris and Doak 2002). In ungulate populations, small changes in 
adult female survival can have a large influence on trends in population size (Gaillard et al. 
1998, Boulanger et al. 2011). However, because adult female survival has relatively low 
variability in many populations (Gaillard and Yoccoz 2003), population trend can also be 
influenced by juvenile survival due to its higher variability (Gaillard et al. 2000, Coulson et 
al. 2005). Effectively managing ungulate populations therefore requires understanding the 
relative contribution of age-specific survival rates to population trend and the potential 
mechanisms influencing these rates. 

Adult survival may best be inferred from collar data, but three assumptions should 
be considered: 1) marking of the individual does not affect its likelihood of dying, either 
through the capture process or from the effect of the collar (which may not be true in all 
instances – see Swenson et al. 1999 and Rasiulis et al. 2014); 2) censoring collars is 
independent of the individual’s fate (biases can result if censored records (i.e., the collar 
signal was lost and therefore the record was censored) are actually deaths and not collar 
failures (that should be censored)), and 3) collared individuals are representative of a 
population (Gunn and Russell 2008). Sample sizes are usually low relative to population 
size, either because of budget restrictions or community concerns (as in the case of several 
northern caribou herds). Although capture costs are generally fixed, long-life, multi-
location GPS-satellite uplink collars often cost six to eight times more than VHF collars. 
Some GPS collars are designed for survival-focussed studies (1-2 fixes/day) and will last 
four to five years (e.g. GlobalStar collars – Vectronics or Lotek). These collars will email a 
mortality signal, eliminating aerial telemetry costs, and facilitating prompt mortality 
investigations.   

Juvenile survival in ungulates can also be estimated from radio collared or ear-
tagged samples, although these types of studies are relatively uncommon. Juvenile: adult 
female ratios can give an indication of juvenile survival rates, particularly if estimates of the 
birth rate are available, although temporal changes in offspring sightability and the female-
offspring bond may bias ratio estimates and thus inferences of juvenile survival (Bonenfant 
et al. 2005). Without birth rate estimates, inferring juvenile survival from changes in 
juvenile: adult female ratios may be confounded by changes in female survival or fecundity 
(Caughley 1974). Harris et al. (2008) suggested that annual estimates of juvenile: adult 
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female ratios may only be useful for detecting severe declines in juvenile survival. Repeated 
intra-annual estimates of these ratios, however, can yield seasonal estimates of juvenile 
survival (e.g. subtracting late winter ratios from fall ratios can estimate overwinter 
survival) although a correction factor to account for adult female mortality during the same 
time period may be necessary to reduce bias (Bender 2006). Boulanger et al. (2011) used 
an integrated population model to estimate juvenile survival in unison with adult female 
survival rates therefore reducing potential bias due to female mortality. 

The primary methods to estimate survival are Kaplan-Meier estimates (Pollock et al. 
1989), or known fate binomial models in program MARK (White and Burnham 1999). The 
Kaplan-Meir estimator is a simple non-parametric estimator that evaluates proportions of 
animals with collars that were mortalities in a time step (usually a month) to produce an 
annual survival rate. The known fate estimator treats mortality events like a binomial trial 
and estimates survival rate using a method similar to logistic regression. The known fate 
method allows the use of covariates to assess factors influencing survival. If time series of 
data are available it is also possible to estimate biological process variance through random 
effects modeling in program MARK (White et al. 2002). Monte Carlo simulations can be run 
to test precision for estimating survival and cause-specific mortality.   

Monitoring the sex ratio can provide insight into relative mortality of the two sexes 
and, if the trend of the population is known, the ratios can be corrected to estimate 
mortality for either sex from ratio data (Bender 2006). 

Dispersal 
Estimates of survival and population trend can be confounded if there are high rates 

of movement by individuals into and out of the study area (Morris and Doak 2002). 
Empirical data of dispersal rates are generally rare for most ungulate populations; 
however, if multi-year mark-recapture data are available, immigration and emigration 
rates can be estimated using robust design models (Pollock 1990). 

Bison populations within the NWT are relatively geographically separated, and 
although movement between the greater WBNP and the Mackenzie or Nahanni populations 
may be attempted, animals observed in the Bison Control Area are generally killed (Bidwell 
et al. 2009), largely eliminating options for dispersal among herds (see below).   

Distribution, Range Size, and Habitat Selection 
Effectively managing a species’ habitat requires understanding its space use and the 

potential mechanisms driving its observed distribution. Traditional knowledge can help 
establish historical range and distribution (summarized in Gardner and DeGange 2003). 
For current distribution, a variety of approaches have been developed to evaluate and 
predict patterns of species distribution with most relying either on ‘presence/absence’ data 
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or ‘presence-only’ data. These approaches can vary from fairly simplistic (e.g. the minimum 
convex polygon) to more complex modeling frameworks such as spatially explicit capture-
recapture which estimates surface of predicted animal densities over the study area. Here, 
we review six common approaches and provide a summary of the relative advantages and 
disadvantages of each (Table 2). In addition, traditional and local knowledge can be a 
valuable source of information for understanding, monitoring and modeling species 
movements and distribution. Local knowledge can be used to establish and refine 
boundaries to movement assumptions for modeling (Gates and Wierzchowski 2003), and 
to delineate ranges, movement corridors and habitat selection (Schramm 2002). Athabasca 
Dené have established zones within which heightened environmental management and 
monitoring occurs, including community and science-based First Nations monitoring and 
enforcement (Athabasca Chipewyan First Nation 2012). Traditional knowledge of species 
distribution has also compared favourably to distributional models derived from modern 
scientific methods. For example, Polfus et al. (2014) demonstrated that a distributional 
map for the northern ecotype of woodland caribou generated from traditional knowledge 
produced similar predictions to one generated from a resource selection function model.   

Minimum Convex Polygon 
The oldest method for quantifying an animal’s space use is the minimum convex 

polygon (MCP; Hayne 1949). The MCP is the smallest polygon encompassing all recorded 
locations (generally from radio collars) of an animal (100% MCP) although the outermost 
5% of locations are frequently excluded to reduce the influence of outlying locations  
(95% MCP). While commonly applied to individuals, the MCP can be pooled across all 
animals to assess a species distribution, an approach that is still used by the IUCN (2012) 
for assessing trends in a species’ extent of occurrence. MCPs, however, have been criticized 
for a number of reasons. First, they are sensitive to sampling effort and may be biased 
when sample sizes are small (Börger et al. 2006, Nilsen et al. 2008, Kolodzinski et al. 2010). 
Second, bias may also be induced by errors in animal spatial locations (Burgman and Fox 
2003). Third, MCPs can encompass large areas that are devoid of animal locations, which 
may be problematic when evaluating for distributional changes (Worton 1987, Burgman 
and Fox 2003, Barg et al. 2005). A further drawback is that MCPs have limited value in 
evaluating wildlife-habitat relationships or predicting species occurrence where data are 
insufficient or non-existent (Nilsen et al. 2008). While assessing compositional differences 
in home ranges can be accomplished, generating explicit spatial predictions (i.e., a map) 
from these types of analyses is problematic. 

Utilization Distributions 
Because of the limitations of MCPs, utilization distributions (UDs) were developed 

as an alternative approach to home range estimation. UDs typically use a non-parametric 
approach that estimates a probability density function (PDF) that describes an animal’s 
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relative use of space (Worton 1989). Fixed kernel and adaptive kernel techniques are 
normally used to estimate the PDF. A critical component to UD estimation is determining 
the appropriate bandwidth or smoothing factor for the kernel estimator (Worton 1989, 
Gitzen et al. 2006) as the choice of bandwidth dictates the resolution or grain at which 
animal use is measured. Similar to MCPs, UDs can be estimated at the population-level and 
probability contours can be used to define the UD boundary. For ungulate species that are 
non-territorial, Börger et al. (2006) suggest that 80-90% probability contours provide an 
accurate estimate of home range size and this estimate is less susceptible to bias from small 
sample sizes than MCPs.  

Utilization distributions can also be used to assess factors influencing an animal’s 
spatial distribution by linking the intensity of use to environmental and behavioural 
variables (i.e., a resource utilization function (RUF); Marzluff et al. 2004, Millspaugh et al. 
2006). RUFs are generally estimated for each individual animal and population inferences 
are derived by averaging estimates across animals. A key advantage to the RUF approach is 
that because it estimates a smooth density surface describing animal use, it is less 
influenced by animal location error compared to other resource selection approaches that 
rely on correctly classifying environmental variables at an animal’s exact observed location 
(see below; Millspaugh et al. 2006). The RUF approach, however, does not take into account 
resource availability, which can influence resource use by an individual (Mysterud and Ims 
1998). Further, by not scaling resource use by its availability, the RUF approach is 
problematic for evaluating whether certain resources are relatively avoided by the focal 
species. 

Occupancy 
In the last decade, occupancy modeling has become a common method for 

monitoring species distribution. In this approach, the study area or region of interest is 
partitioned into sites (or grid cells), which are considered the sampling unit (MacKenzie et 
al. 2002, 2006). From this sampling frame, a subset of sites is selected by a probability-
based process and this subset is repeatedly surveyed to determine species 
presence/absence. The repeated visits yield an encounter history that is used in a 
likelihood-based framework to model detection probability and estimate site occupancy 
(MacKenzie et al. 2002). During the survey period, sites are assumed to be closed (i.e., no 
immigration or emigration) although recent extensions relax this assumption (Kendall et 
al. 2013). Ensuring closure requires careful consideration of the survey period and site size 
(MacKenzie and Royle 2005, Latham et al. 2014). One approach to assure closure of sites as 
well as efficiently estimate detection rates is to use double independent observers for site 
visits. This methodology provides an estimate of sighting probabilities if each observer is 
modelled as a sample session without the requirement of repeated visits. 



 

29 

Typically, site size is set to approximate the average home range size of the focal 
species; however, for wide-ranging species such as large herbivores, site size is often 
smaller than the average home range and in these instances the survey period needs to be 
very short to ensure closure otherwise inferences are restricted to the proportion of the 
study area used rather than occupancy per se (MacKenzie and Royle 2005, Efford and 
Dawson 2012). To predict occupancy states across the study area and account for 
heterogeneity in detection probability, habitat covariates can be easily incorporated into 
the model (MacKenzie et al. 2002, 2006).   

While occupancy modeling has been applied to a wide variety of species, we note 
that its application to ungulates has been more limited. For herding species, occupancy has 
been used to model the distribution of boreal caribou (Schaefer 2003, Poley et al. 2014) 
though these studies have had a long-term focus (e.g. decades). This long time frame was 
likely necessary because sample sites were smaller than home ranges and short-term 
changes in occupancy may reflect differential home range use rather than actual range 
changes in the distribution of the population (e.g. retraction or expansion). We further note 
that spatial clustering may impact occupancy modeling because similar to other modeling 
approaches, estimation becomes problematic when encounter rates are low  
(e.g. probability of occupancy <0.2; MacKenzie et al. 2006). Thus, for spatially clustered 
species, a two-phase adaptive sampling design may be advantageous for assessing 
distribution based on occupancy (Pacifici et al. 2012).  

Resource Selection Functions and Presence-Only Species Distribution Models 
Similar to the RUF approach, this suite of models relies on ‘presence only’ data to 

evaluate and predict species distribution based on relationships with environmental 
variables. These modeling approaches include machine learning models that estimate a 
probability of occurrence distribution based on the principle of maximum entropy 
(program Maxent; Phillips et al. 2006), resource selection functions (RSFs; Manly et al. 
2002) and environmental niche factor analysis (Hirzel et al. 2002). For the latter two 
approaches, inferences are derived by comparing the distribution of locations used by the 
focal species to the distribution of available locations at a spatial extent defined by the 
researcher. Environmental variables (or resources) associated with each location are 
included in the model and are evaluated to determine their relative influence in explaining 
differences in these distributions. Unlike RUFs, resource use is scaled by the availability of 
the particular resource, which means that the relative strength of an animal’s resource 
selection can be dependent on resource availability (Mysterud and Ims 1998).  

A primary focus of presence-only models is to generate spatial predictions of habitat 
suitability. These types of models, particularly RSFs, have been used to assess habitat 
associations for wide variety of ungulate species (e.g. elk, Hebblewhite et al. 2008; caribou, 
DeCesare et al. 2012b). Inferences from RSFs, however, fundamentally differ from 
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occupancy. By comparing used resource units (i.e., animal locations) to available resource 
units, RSFs estimate the probability that a resource unit is selected given that it is 
encountered by the animal. Occupancy modeling, on the other hand, estimates the 
probability that a sample site will be occupied during a given time period by the focal 
species. This distinction is primarily due to differences in the sampling frameworks and 
because occupancy explicitly incorporates absence data (Lele et al. 2013). In most 
presence-only models, the sampling unit is a point or pixel, which is generally a much 
smaller scale than the sample sites used in occupancy modeling; consequently, locations 
are not considered closed during sampling and unused locations do not equate to being 
unoccupied. The sampling of “used” locations (animal presence) is also not driven by a 
probabilistic sampling process and instead is driven by movement of the focal species 
(Koper and Manseau 2009). Extrapolating inferences of species distribution to areas 
without animal location data is therefore problematic for presence-only models and model 
predictions are rarely validated by assessing whether predicted areas of high suitability 
actually contain the target species. These key differences make presence-only models less 
powerful than occupancy models for monitoring changes in species distribution.   

Density Surface Modeling from Aerial Survey or Mark-recapture Data 

Aerial Survey Data 
A more recent approach termed density surface modeling uses data from distance 

sampling to model distribution and habitat selection (Miller et al. 2013). This approach 
explicitly models the detection function of animals from aerial transect surveys and factors 
influencing detection (i.e., canopy cover). The response variable in this case is density 
rather than selection which potentially allows estimates of population size for subregions 
of the study area. We suggest this approach is useful for partitioning densities within study 
areas but also potentially useful for assessing areas of higher habitat quality outside of 
study areas. We provide further exploration of this approach in Section C. 

We note that density surface modeling is similar to RSF modeling discussed in RSF 
and Presence-Only Species Distribution Models with availability of habitat types defined by 
habitats sampled within transects where no animals were detected. Boulanger et al. (2011) 
applied this type of approach to derive RSF’s for barren-ground caribou from strip transect 
surveys. The key difference is that detection of caribou was not incorporated into this 
analysis and instead assumed to be constant for all habitat types (given that all habitat 
types were above timberline). Because detection was not estimated the model could only 
estimate relative use of habitat types rather than probability of occurrence.   

Mark Recapture Data 
If individuals are marked and sampling occurs over multiple sessions then spatially 

explicit capture-recapture (SECR) models can be used to fit density surface modeling. 
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Under the SECR paradigm, inference can be expanded beyond the traditional sampling grid 
area by sampling sub grids or using two stage sampling approaches where “core areas” 
with higher coverage are sampled to estimate population size and density and secondary 
areas are sampled to assess distribution and broader-scale density (Conroy et al. 2008, 
Efford and Fewster 2013). This approach allows for an assessment of distribution which is 
similar to occupancy, but without the subjectivity and potential issues with defining plot 
sizes in occupancy models (Efford and Dawson 2012). The main advantage of SECR models 
in this context is that scale of movement and detection probabilities are estimated directly 
from the underlying mark-recapture data as opposed to occupancy where only detection is 
estimated. If habitat covariates exist it is also possible to develop RSF-type models that 
model density surfaces to therefore assess factors that might influence distribution and 
densities of the target species within survey extents (Miller et al. 2013, Royle et al. 2013). 
Because the development of SECR methods is relatively recent, we note that there are no 
published studies of its use with ungulates although it has been used extensively with 
carnivores and other species. For ungulates, capture-recapture data would likely be 
derived from fecal DNA-based methods or mark-resight methods (Sollmann et al. 2013). 
These data collection methods may result in SECR having higher costs than the other 
approaches reviewed here for evaluating and monitoring species distribution.  
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Table 2. Comparison of six approaches for evaluating species distribution and habitat 
associations. 

Model Framework Advantages Disadvantages 
Minimum Convex 
Polygon 

Estimates range size 
by constructing the 
smallest polygon that 
encompasses observed 
animal locations  

Conceptually easy to 
construct. 

Requires collared 
bison or presence only 
data 
Potentially biased by 
small sample sizes and 
animal location error. 
Can include large areas 
that may be unsuitable 
habitat. 
Limited value in 
predicting wildlife-
habitat relationships 
 

Utilization 
Distribution 

Estimates a probability 
surface describing the 
relative intensity of 
animal use 

Less biased by sample 
size and likely 
provides a more 
accurate estimate of 
range size for non-
territorial species than 
MCP. 
Intensity of use can be 
linked to 
environmental 
covariates allowing 
explicit predictions of 
space use across the 
study area. 

Requires collared 
bison or presence only 
data. 
Does not take into 
account resource 
availability. 

Occupancy Study area is 
partitioned into 
sample sites which are 
repeatedly surveyed to 
estimate detection 
probability and  

Explicitly models 
imperfect detection.  
Incorporates ‘absence’ 
data which yields a 
more straightforward 
interpretation of 
species occurrence 
within the study area. 
Environmental 
covariates can be 
included to account for 
heterogeneity in 

Requires multiple 
visits to sites to 
estimate detection 
probabilities 
Estimate is sensitive to 
size of sample sites 
and low rates of 
encounter. 
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Model Framework Advantages Disadvantages 
detection and 
occupancy. 

Resource Selection 
Function 

Compares the 
distribution of animal 
locations to the 
distribution of 
available locations 
within the study area. 

Can use aerial survey 
or telemetry data 
Yields fine-scale, 
spatially explicit 
evaluation of wildlife-
habitat relationships. 

Non-probabilistic 
sampling framework 
and lack of absence 
data inhibits strong 
inference on species 
occurrence. 

Density surface 
modeling 
Aerial transect 
distance surveys. 

Uses data from 
distance surveys to 
estimate spatial extent 
of sampling and 
probability of 
detection of bison. 
Divides transects into 
segments that are 
summarized in terms 
of habitat  

Estimates detection of 
animals and 
incorporates this into 
estimates of 
association between 
habitat and density. 
Provides a direct 
assessment of density 

Requires distance 
sampling data with 
associated sample size 
requirements 

Density surface 
modeling 
Spatially Explicit 
Capture-Recapture 

Estimates a surface of 
animal densities across 
the study area using a 
two-stage approach. 

Sample plot size is 
estimated empirically. 
Environmental 
covariates can be 
included to model 
density and 
distribution. 

Requires individually 
marked bison. For 
fecal-DNA approaches, 
may be labour 
intensive more costly 
than other approaches. 
No empirical tests on 
ungulates. 

 

Detecting Mortality Events and Disease Outbreaks 
Bison in the NWT are affected by three diseases, but it is primarily anthrax that can 

cause rapid mortality to a sizable portion of the population under relatively specific 
environmental conditions (reviewed in NWT disease, Detecting Disease Outbreaks in the 
NWT). Our focus in this section is not on the epidemiology or surveillance for incidence of 
diseases in NWT bison populations, but on detection of major mortality events (e.g. disease, 
drowning, or starvation) that could affect a large enough portion of a population to change 
management actions for the herd. However, principals from disease surveillance – “an 
active, on-going, formal, and systematic process aimed at early detection of a specific 
disease or agent in a population, or early prediction of elevated risk of a population 
acquiring an infectious disease, with a prespecified action that would follow the detection 
of disease” (Thurmond, 2003) – could be applied to detection of mortality events. Disease-
surveillance programs employ “proportional risk sampling” or “weighted sampling” to 
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enhance the ability to detect the disease of interest by focusing surveillance efforts on areas 
and individuals with the highest probability of being infected or, in other words, those at 
the greatest disease risk (Thurmond 2003, Walsh 2012).   

Oral history has been used to identify historical die-offs in what is now the WBNP 
area that resemble features of anthrax mortality that occurred among bison in the same 
area more recently (Ferguson and Laviolette 1992). Local knowledge by community 
members can aid in understanding of bison habitat selection, movement patterns, water 
crossing locations, and distribution as they relate to disease risk management measures 
(Mitchell 2002).  

In Prince Albert National Park anthrax was initially not known to occur when first 
detected by hikers (Shury et al. 2008). Rapid testing followed by four helicopter surveys 
detected a total of 28 bison killed, mostly adults. 

In WBNP and the Slave River Lowlands, the length of an outbreak was not a 
determinant of the number of dead bison found, but outbreaks starting in July had more 
deaths than those staring in June (Salb et al. 2014). This study concluded that males were 
more likely to be detected in an outbreak, outbreaks were likely not random events, and 
there was no relationship between outbreak size or length and location. The authors 
concluded that surveillance activities may benefit from targeting bulls. 

As noted, anthrax in NWT bison generally occurs under specific environmental 
conditions – in summer, generally during hot dry conditions following very wet springs 
(Gates et al. 2001). Large-scale mortality events are generally clustered (e.g. a group of 
bison breaking through ice on one of the main lakes or rivers; anthrax outbreaks) and 
highly clustered dispersion of samples reduces the probability of detecting at least one 
event (Walsh 2012). However, large-scale mortality events often will cause large 
differences in population estimates and therefore may be more detectible than usual 
fluctuations in abundance. Collection of weather covariates that might create conditions 
favourable to anthrax could be used to help determine the best strategy to detect disease 
events. Retrospective analysis of historic survey and composition data could be used to test 
whether historic anthrax events are correlated with weather or other environmental 
variables. 

  



 

35 

PART B: OVERVIEW OF OPTIONS FOR MONITORING BISON IN THE NWT 
 

Here we provide an overview of bison monitoring across northwestern Canada, and 
use data from the Mackenzie bison herd to evaluate the efficiency of composition surveys 
and explore the use of an integrated population model.   

Review of Bison Monitoring in the NWT and other Canadian Jurisdictions 
Population Monitoring 

Recent bison survey methods in jurisdictions in western and northern Canada 
outside of the NWT vary from roadside counts and spaghetti-type aerial surveys to transect 
surveys and mark-resight surveys (Table 3). Survey effort varies from periodically to 
infrequently. Several studies provide minimum counts with no associated variance. Survey 
design for the Aishihik herd in the Yukon used arguably invasive paint-balling of 8% of the 
herd followed by three resight sessions; the CV of the estimate was a tight 0.06 (Jung and 
Egli 2012). Strip transects of herds in WBNP provided 30% coverage in some areas and full 
coverage in others, and also resulted in tight confidence around the estimate (CV=0.09; 
Kindopp and Vassal 2010). Mark-resight using photographic identification provided 
relatively tight estimates, but is likely most appropriate for smaller, more easily accessible 
populations (Merkle and Fortin 2014). With the exception of the Yukon and Prince Albert 
National Park surveys, no other areas address a sightability correction factor.   
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Table 3. Bison survey parameters gathered by herd/jurisdiction in western and northern Canada. N/A = not applicable. 

Jurisdiction 
Area; 
Subspecies Month Year 

Population 
estimate Coverage CV 

Sight. 
Corr. 

Composition/ 
Demography Reference 

British 
Columbia 

Pink Mt; 
Plains 

Feb 2006 Aerial 
stratified 
random block 
sampling 
(Gasaway); 2 
strata 

N/A - No Aerial surveys Rowe 2006 

 Nordquist, 
Etthithun; 
Wood 

2012, year-round Minimum road 
counts; 
opportunistic 
aerial count 

N/A - No Road-based 
transects 

Thiessen 
2012 

Alberta Hay-Zama; 
Wood 

Mar 2012 Strata flight, 
chopper count 

Unknown - No Aerial surveys Hermanutz 
and 
Fullerton 
2012 

Wood Buffalo 
National Park 

WBNP; 
Wood 

Feb-Mar 2009 (2014) 2 x 500 m 
strip transect 
surveys with 4 
strata for strip 
transect 
estimates 

40-100% 0.09 No Aerial surveys Kindopp 
and Vassal 
2010 

Saskatchewan Prince 
Albert NP 
(Sturgeon 
R); Plains 

Mar 2011-12 Photograph 
mark-resight; 
10 sampling 
events; 
(minimum 
count strip 
survey) 

N/A 0.12-
0.14 

Yes 
(MARK) 

Adults only Merkle and 
Fortin 2014 

Yukon Aishihik; 
Wood 

Jul 2011 Aerial mark-
resight; 3 
resight flights 

N/A ~0.07 Yes (paint-
ball) 

 Jung and 
Egli 2012; 
Hegel et al. 
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Jurisdiction 
Area; 
Subspecies Month Year 

Population 
estimate Coverage CV 

Sight. 
Corr. 

Composition/ 
Demography Reference 

2012  
NWT Nahanni; 

Wood 
Mar 2011 2 x 500 m 

strip transect; 
(Jolly II) 

23% 0.25 Yes (7 
collars) 

Separate 
surveys 

Larter and 
Allaire 
2013b 

 Mackenzie; 
Wood 

Mar 2012-13 2 x 500 m 
strip transect 
and Distance 
sampling; 3 
strata 

40%; 2.5 
km 

transect 
spacing 

0.22 Yes 
(Distance) 

 Armstrong 
and Cox 
2013; 
Boulanger 
2104a 

 Slave R 
Lowlands; 
Wood 

Feb 2014 Line transect; 
Distance 
sampling; 2 
strata 

2.5 km 
transect 
spacing 

0.38 Yes 
(Distance) 

 Armstrong 
2014; 
Boulanger 
2104b 
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Recent surveys of the three NWT bison herds have used strip transects (with 
sightability correction assessed using collared individuals) and distance sampling (Table 
3). If large groups are observed the survey aircraft leaves the transect to circle each group 
and photograph and obtain a count. Coefficient of Variation in all surveys was relatively 
high (0.25–0.38). The estimate in the 2014 Slave River Lowlands (1,083) was only 7% 
higher than the number of bison counted on transect (1,013) due to double counting of 
bison from adjacent transect lines (Boulanger 2014b; unpublished data). We note that 
double counting of bison from adjacent lines does not bias distance sampling estimates. 

Pellet-based, DNA-based, or remote camera methods, are probably too labour 
intensive given that the sightability of bison is relatively high and therefore it is not cost-
effective to genotype DNA from pellets unless further inference on genetic variability is an 
objective. Beyond higher cost, the main disadvantage of DNA methods is the longer time 
period required for genotyping of pellet data and subsequent difficulties in obtaining 
timely estimates for management.  

Radio collaring bison for mark-resight methods and survival rate estimation may be 
useful in smaller areas but is less likely to be cost-efficient for all bison herds. Collaring 
would be most beneficial for areas that have higher forest cover to allow a secondary 
estimate of sightability using mark-resight methods or sightability models. However, use of 
mark-resight methods, which require suitable sample sizes of collared bison, is not efficient 
for herds that are primarily in open areas where distance sampling methods can be 
efficiently employed to estimate detection rates.   

Of methods that are available we suggest that distance sampling methods provide 
the most inference and robust estimates and are likely the most cost-effective. Distance 
sampling allows the data from all observations to be used (as opposed to only observations 
within the 400 m survey strip for strip transects) and is therefore more efficient than strip 
transects. The main constraint for the use of distance sampling is appropriate collection of 
sighting data to allow simpler detection function models to be used. In addition, sightability 
near the plane is assumed to be close to 1, an assumption that can be further tested using 
double observer/distance sampling methods. We provide suggestions for enhancement of 
distance sampling methods in Modeling Ungulate Population Dynamics: A Case Study Using 
Wood Bison. 

Composition Monitoring 
Classification of bison during aerial surveys are generally limited to calves, possibly 

yearlings, and adults ≥2 years (e.g. Hermanutz and Fuller 2012, Jung and Egli 2012, Larter 
and Allaire 2013b). Multiple age and both sex classes can be discerned, but this requires 
viewing from close range on the ground (Carbyn 1998).   
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Surveys to determine herd composition in the Mackenzie, Slave River Lowlands and 
WBNP are usually conducted in June to mid-July, where a helicopter is used to locate bison 
by searching open habitats known to be inhabited at that time of the year (as in non-
systematic sampling) (Bradley and Wilmshurst 2005, T. Armstrong, GNWT ENR, 
unpublished data). Surveys are timed for after most of the calves are born, but early 
enough that none have started to lose their reddish coat which facilitates detection. With 
this timing there will have been some calf mortality. Small groups are classified from the 
air, either by using binoculars during hover or by pushing animals and classifying by naked 
eye during a fly-by. For large herds a location is chosen where the pilot can put observers 
on the ground then push the animals toward them, with classification conducted as they go 
by. Success of this method is highly variable (T. Armstrong, GNWT ENR, pers. comm.); it 
works well if the location is appropriate, the animals remain calm, and the pilot reads the 
herd behaviour correctly. If not, only animals on the near side of the herd may be classified 
as they stampede past on a hard run.   

Composition surveys for the Nahanni herd are conducted by boat in mid- to late July 
to allow the Liard and Nahanni river levels to drop and expose the sand bars which bison 
utilize in the summer, likely areas that provide relief from heat and insects, and relatively 
easy access to high-quality forage (Larter and Allaire 2007). A similar approach to group 
size is used as for aerial surveys; small groups are classified from the boat, and larger 
groups are classified with binoculars from shore. One or two large mixed sex/age groups 
and few mature bulls groups are usually classified each year (Larter and Allaire 2007). For 
the Nahanni herd about 130-170 individuals generally are classified out of a population of 
about 400-430 animals, perhaps 30-40% of the population. Observations of calves  
(20-57:100 cows) and yearlings (10-31:100 cows) vary widely among years, but only two 
population estimate data points are available (2004 and 2011) that produced similar 
estimates (see Larter and Allaire 2007).   

Bison are classified into the following age and sex categories: calves, yearlings, cows 
and bulls classified by horn morphology as B1 (juveniles: estimated age 2–3 yrs), B2 
(subadults: 4–6 yrs), B3 (prime, adult males: 7–12 yrs), and rarely B4 (old bulls ≥10 yrs, 
with noticeable wear on the horns) (Larter and Allaire 2007; T. Armstrong, pers. comm.). 
Calves and yearlings are not classified by sex. Juvenile survival can be determined by 
comparing the ratio of yearlings/100 cows to calves/100 cows (Larter and Allaire 2007), 
and appears to be strong indicator of population trend (Bradley and Wilmshurst 2005). 
However, comparison of recruitment from annual calf/cow or yearling/cow ratios assumes 
a similar adult survival rate. An integrated population model (Base Life History Model) 
provides a way to estimate calf survival rate and recruitment while accounting for adult 
female survival.  
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Estimates of the Precision from NWT Composition Data 
We suggest that composition survey analyses should always be accompanied by 

estimates of standard error and confidence limits to determine the contribution of 
sampling variance to observed population trends. We used bootstrap methods (Manly 
1997) to estimate standard error and confidence limits on composition data from the 
Mackenzie, Slave River and Nahanni herds. For this procedure data sets were randomly 
resampled for 500 iterations with confidence limits defined by the 2.5th and 97.5th 
percentile of resampled estimates and standard error estimated by the standard deviation 
of resampled estimates. We then graphically analyzed trend and empirically assessed 
sample sizes needed to obtain adequate precision of estimates.   

We note that this exercise mainly considers estimate precision as opposed to bias. 
One assumption of estimates is that the herd is sampled representatively so that the actual 
proportions observed in groups will indicate actual composition of the entire herd. Factors 
such as segregation of sex or age groups can challenge this assumption especially if some 
sex and age groups occur in smaller groups that are not as easily observed. For this reason 
we suggest a systematic approach to composition survey design that samples groups in 
proportion to abundance. Of methods employed an aerial survey approach provides the 
best method to obtain a representative sample. 

One of the main reasons for reduced precision is low sample sizes of groups 
encountered during the composition survey. A comparison of the CV of estimates versus 
the number of groups for all composition data suggests that at least 25 (calf:cow ratios) to 
30 (yearling:cow ratios) groups need to be sampled for the CV of composition estimates to 
be less than 0.20 (Figure 1). The precision of bull:cow ratios was lower than yearling:cow 
and calf:cow ratios. This is presumably due to a large degree of variation in the numbers of 
bulls in groups encountered which is potentially due to segregation of bull and cow bison. 
In this case most estimates were imprecise even when sample sizes were larger. 
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Figure 1. The coefficient of variation (CV) of composition survey estimates as a function of 
the number of groups sampled for each yearly survey for the three primary NWT survey 
areas where composition data have been collected. 

The main conclusion from this analysis is that threshold sample sizes of groups 
(>30) need to be obtained to allow reasonable precision for composition survey estimates. 
Otherwise, it may be difficult to separate variation in composition due to sampling 
variation from actual biological variation in productivity or adult sex ratio. We speculate 
that determination of bull:cow ratios may require greater sampling intensity that attempts 
to better sample groups of bulls that are segregated from other groups. We provide the 
composition estimates from Figure 1 with associated standard errors in Appendix B of this 
report. 
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We also suggest that composition surveys are most valuable if viewed in the context 
of overall population demography through the use of an integrated population model. If 
this approach is used it is possible to estimate calf survival, yearling survival, adult survival 
as well as overall productivity through the integration of composition survey data and 
repeated abundance surveys. Using this approach potentially protects against bias caused 
by differential trends in survival rates of age and sex classes (Boulanger et al. 2011, Harris 
et al. 2008). It also allows the test of association of demographic parameters with 
environmental or other covariates. We provide a case study of this approach with the 
Mackenzie bison composition and abundance data in Modeling Ungulate Population 
Dynamics: A Case Study Using Wood Bison. 

Detecting Disease Outbreaks in the NWT 
Wood bison in WBNP, the Slave River Lowlands, and surrounding areas in Alberta 

are affected by two cattle diseases, bovine brucellosis (caused by the bacterium Brucella 
abortus) and tuberculosis (caused by the bacterium Mycobacterium tuberculosis), and 
anthrax (COSEWIC 2013). However, no bison from the Ronald Lake herd, found south of 
WBNP, have tested positive for brucellosis or tuberculosis (Ball et al. 2016). Brucellosis 
causes reduced fecundity largely through infertility and increased incidence of abortion, 
and tuberculosis is a respiratory disease which impacts fecundity and survival (Tessaro 
1989). Anthrax is a naturally occurring infectious disease caused by the endospore-forming 
bacterium Bacillus anthracis (Gates et al. 2001). Spores can remain dormant in the soil for 
decades; disease outbreaks in the WBNP area may have occurred nearly two centuries ago 
(Ferguson and Laviolette 1992). Anthrax outbreaks emerge in certain environmental 
conditions – in summer, generally during hot dry conditions following very wet  
springs – with rapid mortality a result of toxins in the bloodstream causing septicaemia and 
death (Gates et al. 2001). Disease outbreaks can severely affect subpopulations, as shown 
by the 53% reduction in the Mackenzie herd between 2012 and 2013 as a result of an 
anthrax-caused die-off (Boulanger 2014a). Seven documented anthrax outbreaks were 
documented in the Slave River Lowlands between 1963 and 2001, killing at least 950 bison 
(Nishi et al. 2007). In WBNP and the Slave River Lowlands the length of an outbreak was 
not a determinant of the number of dead bison found, but outbreaks starting in July had 
more deaths than those staring in June (Salb et al. 2014). 

The NWT is faced with two tasks related to disease: ensuring that bison from the 
Greater WBNP meta-population infected with either brucellosis or tuberculosis do not 
come in contact with bison from the Mackenzie and Nahanni subpopulations, and detecting 
anthrax outbreaks in a timely manner to allow management responses to minimize spread 
of the disease. To address the first task, the NWT Bison Control Area was created in 1987 
and covers much of the NWT west of the Park and south of Great Slave Lake and the 
Mackenzie River (Bidwell et al. 2009; Figure 2). The area is currently patrolled using aerial 
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transect surveys flown twice each year, in February and March (Figure 3). Up to 2020 15 
bison have been removed from the Bison Control Area (Species at Risk 2010).  

 

 

Figure 2. Bison Control Area (Figure 2a) and the three zones (Figure 2b) within the NWT, 
(Bidwell et al. 2009).  

 

 

Figure 3. Survey of BCA flown twice per year. 
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Anthrax surveillance surveys are conducted bi-weekly, generally between mid-June 
and mid-August, within the core of the Slave River Lowlands and Mackenzie herd ranges 
(Elkin et al. 2013). An increase in aerial surveillance also occurs if anthrax is suspected or 
detected (e.g. Nishi et al. 2007). Surveillance flights are conducted over large open areas, 
low marshy areas and water edges, and major bison concentrations within the normal 
bison range, emphasizing but not restricted to areas of previous outbreaks. Surveillance 
flights are generally conducted by small fixed-wing aircraft at an altitude of 240-360 m 
above ground level and an air speed of approximately 100-120 knots.   

Further refinement of prediction of disease outbreaks 
It may be possible to use weather data to predict likely occurrences of disease. As 

noted, anthrax in NWT bison generally occurs under specific environmental conditions – in 
summer, generally during hot dry conditions following very wet springs (Gates et al. 2001).   

Further refinement of surveillance efforts 
We note that data from distance surveys could be analyzed to determine detection 

probabilities of bison during aerial surveys and from this simulation methods could be 
used to assess survey effort needed to detect threshold densities of bison in control areas. 
In detail, distance sampling methods estimate probability of detection of bison within a 
specified “effective sampling area”, the encounter rate of observers with bison (which will 
be proportional to density), and the average group size of bison encountered (Buckland et 
al. 1993). Each of these parameters can be varied in a simulation study to determine 
optimal sampling effort to ensure detection of at least one bison group given an assumed 
density of bison and group size. This analysis would require that a threshold density as 
well as study extent be defined for the surveillance areas. Previous simulation studies 
(Gates and Wierzchowski 2003) of bison movement between populations could be used to 
further allocate surveys to areas that bison may occur within the surveillance zones. 

Modeling Ungulate Population Dynamics: A Case Study Using Wood Bison 
In this section we use data from the Mackenzie bison herd to explore the use of an 

integrated population model that utilizes data from population surveys and composition 
surveys to model bison demography in this herd. The main objectives of this exercise were: 

• Determine if a population model would work reliably with bison data given the 
absence of collar-based adult survival estimates; 

• Use the population model to explore key strengths and weaknesses of current bison 
data with resulting recommendations for future field efforts; 

• Demonstrate how environmental data might be investigated to examine potential 
relationships between demographic parameters and environmental covariates;  

• Contrast a simpler spreadsheet-based demographic model approach with a 
Bayesian state space modeling approach. 
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Data Sources 

Demographic Data 
The main information about herd status for the Mackenzie comes from sporadic 

abundance surveys and composition surveys that are conducted annually or bi-annually  
(T. Armstrong, GNWT ENR, unpublished data). Composition estimates with associated 
confidence limits show that some of the annual variation in composition could be due to 
sampling variation (Figure 4). For example, when precision is considered it becomes 
evident that many of the yearly differences in ratios could be attributed to sampling 
variation with some years indicating lower values (e.g. 2002 and 2013 for calf:cow ratios). 
The challenge with composition data is determining how it relates or predicts overall 
population trends and demography, which is where an integrated population model can be 
useful.   
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Figure 4. Estimates from composition data for the Mackenzie bison herd with confidence 
limits estimated using bootstrap percentile methods. Note the different scale on the 
bull:cow ratio graph. No confidence limits were possible for 2014 for yearlings since none 
were observed. The upper confidence limits for bull:cow ratio for 2014 was five (off the 
graph).   
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Environmental Data 
Environmental parameters were derived from Government of the NWT water 

management stations (snow water equivalent (SWE) for Little Buffalo Tower and Kakisa 
River; www.enr.gov.nt.ca/programs/water-management/snow-survey-monitoring-
network), and from Environment Canada data from the Hay River airport (total snowfall, 
total rainfall, mean Dec-Mar (winter) temperature, and mean Jun-Jul (summer) 
temperature; http://climate.weather.gc.ca/). From these data we calculated winter 
severity index (WSI; calculated after Baccante and Woods 2008, which factors mean 
monthly temperature with total monthly snowfall), length of winter, and date of last snow 
>10 cm. Monthly or daily data were used as appropriate. We also examined as a covariate 
the Pacific Decadal Oscillation (PDO; http://jisao.washington.edu/pdo/PDO.latest). Annual 
data were summarized from May-April to align with bison year modeling (starting 15 May).  

Base Life History Model 
The life history model was based on a caribou demographic model (Boulanger et al. 

2011) with some changes to accommodate bison life history and survey methods (Figure 
5). For this model we assumed a three stage population model with each year defined by 
the approximate time (May 15) in which bison calves are born. For this model, the 
proportion of calves that survived to become a yearling was estimated as calf survival (Sc), 
the proportion of yearlings that became adults as yearling survival (Sy) and the proportion 
of adults that survived each year as Sf (females) and Sm(males). A female bison did not 
breed until its third breeding season (aged two years, five months during the fall breeding 
season) and therefore could produce a calf when it turned three years old. The proportion 
of calves produced by females was estimated as fecundity Fa. The actual proportion of adult 
females that produced a calf each year was the product of female survival through the 
winter and fecundity. An even sex ratio at birth was assumed so that half the calves 
produced were male and half were female. 

 

http://www.enr.gov.nt.ca/programs/water-management/snow-survey-monitoring-network
http://www.enr.gov.nt.ca/programs/water-management/snow-survey-monitoring-network
http://climate.weather.gc.ca/
http://jisao.washington.edu/pdo/PDO.latest
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Figure 5. The female life history model used for the bison integrated population model. 
Male life history was similar (as parameterized by Nm and Sm for adult males) but without 
the reproductive loop. 

Model parameters were estimated from composition surveys that usually occurred 
in July and abundance surveys that occurred in February and March. For composition 
surveys, each measurement was parameterized dependent on assumptions about bison life 
history and the timing of the survey. Calf:cow ratios were estimated as (𝐹𝐹𝑎𝑎𝑆𝑆𝑐𝑐

(𝑡𝑡 365)⁄ )/𝑆𝑆𝑓𝑓
(𝑡𝑡 365⁄ ) 

where t was the interval in days between the birth of the calf (May 15) and the composition 
survey, therefore scaling survival rates for the appropriate interval. Yearling:cow ratios 
were estimated as (𝑁𝑁𝑦𝑦𝑆𝑆𝑦𝑦

(𝑡𝑡 365)⁄ )/(𝑁𝑁𝑓𝑓𝑆𝑆𝑓𝑓
(𝑡𝑡 365⁄ ))  and bull:cow ratios were estimated as 

(𝑁𝑁𝑚𝑚𝑆𝑆𝑚𝑚
(𝑡𝑡 365)⁄ )/(𝑁𝑁𝑓𝑓𝑆𝑆𝑓𝑓

(𝑡𝑡 365⁄ )).  Bison abundance during March surveys was estimated as 

𝑁𝑁𝑐𝑐𝑆𝑆𝑐𝑐
(𝑡𝑡 365)⁄ + 𝑁𝑁𝑦𝑦𝑆𝑆𝑦𝑦

(𝑡𝑡 365)⁄ + 𝑁𝑁𝑓𝑓𝑆𝑆𝑓𝑓
(𝑡𝑡 365)⁄ + 𝑁𝑁𝑚𝑚𝑆𝑆𝑚𝑚

(𝑡𝑡 365)⁄  where t was the interval between May 15 
of the previous year and the survey that usually occurred in February or March of the 
following year.   

The basic process in which an integrated population model works is to estimate 
each of the demographic parameters so that they best corresponds to each of the field 
indicators. Intuitively, this could be thought of as subjectively varying each parameter in 
the model (survival, abundance, fecundity) so that the resulting calf-cow ratios, yearling-
cow ratios, and abundance estimates from the model correspond to the field indicators. 
The actual process of fitting the model is accomplished using statistical programs that 
efficiently fit the model and provide indicators of how well the model fits the data. 

Modeling Strategies 

Strength of Field Indicators Guides Modeling Strategies 
Inspection of Figure 5 also reveals the main aspects of demography that are directly 

informed by the field data. Given that birth occurs in May, the calf:cow ratios will indicate 
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variation in yearly fecundity and calf survival from May to July when the composition 
surveys occur. Yearling:cow ratios will indicate calf survival from the composition survey 
(July) until the following May when calves become yearlings. After May, yearling:cow ratios 
will indicate yearling survival up to the July composition survey (i.e., survival from 12-14 
months of age). The abundance surveys in March mainly indicate overall trend in herd size 
including adult survival. However, given that herd size is affected by all cohorts, the link 
between adult survival and herd size is indirect. Bull:cow ratios will mainly indicate bull 
survival given that there are no other indicators of bull population size. 

Given limitations in field data, model analyses mainly focused on variation in calf 
survival (Table 4). Variation in adult survival was difficult to assess given that it is only 
indirectly indicated by field indicators. Variation in yearling survival is mainly indicated by 
the two month interval between calving (at which time calves of the previous year become 
yearlings) and the time composition surveys occur. We note that estimation of fecundity is 
partially confounded with calf survival. For example, a low calf:cow ratio in a given year 
could be due to low calf survival or low fecundity. The main method the model uses to 
determine this confounding effect is by considering the yearling:cow ratio in the following 
year. For example, a scenario in which the calf:cow ratio is lower (0.30) in a given year but 
the yearling:cow ratio in the next year is similar (0.25) would indicate higher calf survival 
but lower fecundity. However, this method has the inherent assumption that the calf 
survival rate is constant across a given year and it also relies on sequential calf:cow and 
yearling:cow estimates.  

Table 4. Summary of demographic parameters for the integrated population model with 
corresponding strength of estimate based upon related field indicators. Note that the 
integrated population model uses all the data to estimate each parameter. 

Parameter Symbol Ages Strength of estimate 
Primary field 
indicator(s) 

Adult female 
survival Sf >2 weak  Herd size 
Adult male survival Sm >2 Very weak Bull:cow ratio 
Fecundity Fa >2 weak (confounded with Sc) Calf:cow ratio   
Yearling survival Sy 1-2 weak Yearling:cow ratio   
Calf survival  Sc 0-1 strong Yearling:cow ratio and  

    
Calf:cow ratio   

Ranges of Data Considered 
We only considered abundance data up to 2012 with the exclusion of the 2013 data 

that were affected by an anthrax outbreak. The 2013 data point created extra variation in 
the data that was not typical of previous years. We suggest that future efforts could 
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consider these data and subsequent changes in parameters caused by the anthrax 
outbreak. 

Modeling Approaches Used 
Two modeling approaches were used with the bison data. First, a simpler ordinary 

least squares (OLS) based method (White and Lubow 2002, Boulanger et al. 2011) was 
used to provide a base assessment of parameter values as well as determine initial 
feasibility of a modeling approach. This approach can be implemented on a spreadsheet 
making it useful for management based exercises. However, in its current form it does not 
provide standard error estimates of model parameters. Second, a Bayesian state-space 
model (Buckland et al. 2004b, Kery and Schaub 2012) was used for further investigation of 
temporal variation in parameters and relationships between environmental covariates and 
parameters. This approach provides a more in-depth method for modeling sampling 
variation as well as better estimates of parameter precision.  

OLS model 
The OLS method uses a relatively simple method to assess model fit. Each model 

prediction (θ) was compared to a corresponding field estimate (𝜃𝜃�), using the penalty term 
(ε) where 𝜖𝜖 = [(𝜃𝜃 − 𝜃𝜃�) 𝑆𝑆𝑆𝑆(𝜃𝜃�)]⁄ 2. The penalty term considered the agreement between 
model predictions (θ) and field estimates (𝜃𝜃�) in the units of the precision of the field 
estimate (as estimated by SE(𝜃𝜃�)). For example, a large difference between a model 
prediction and a field estimate might not result in a large penalty if the standard error of 
the field estimate was large. White and Lubow (2002) further showed that the penalty 
terms were proportional to the log-likelihood of the model and therefore could be used 
instead of log-likelihood values to assess model fit.   

The basic objective of modeling was to maximize agreement between field data and 
model parameters. To accomplish this, the parameters were iteratively varied (using the 
SOLVER optimization algorithm in Excel (Microsoft Corporation, Redmond, Washington, 
USA)) to minimize the sum of penalties for a given set of parameters and model 
formulation, which is termed the OLS estimator of model parameters. Survival and 
fecundity terms were logit-transformed (McCullough and Nelder 1989) to ensure that the 
resulting estimate was in the 0-1 interval. An initial stable age distribution was assumed to 
minimize variability in parameters caused by initial state conditions. PopTools (Hood 
2009) add-in was used to estimate the stable age distribution. 

Initial analysis revealed that it was not possible for the model to produce reasonable 
estimates of both yearling survival and adult survival without constraining yearling 
survival to equal adult survival or calf survival. The reason for this was that there was 
minimal information to separate adult from yearling survival given the limited field data on 
either parameter. Moreover, there is little to no information on estimates of yearling 
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survival in the literature (Brodie 2008). The most biologically reasonable constraint was to 
make yearling equal adult survival and therefore this constraint was applied for model 
runs. 

Model fitting was focused on determining the most parsimonious model to explain 
variation in productivity (Sc and Fa) given that this was the main data source for the model 
(from composition surveys). Models with cubic terms for productivity (Table 5: model 5), 
cubic terms for calf survival (model 1) and combinations of both parameterizations (model 
2) were compared to a base model with no trends (model 6). Of these, a model with cubic 
trends in calf survival was most supported (model 1). A model with trends in adult female 
survival (model 3) was not supported compared to a model with constant adult female 
survival. 

Table 5. OLS model selection for Mackenzie bison data. Sample-size adjusted Akaike 
Information Criteria (AICc), difference in AICc between most supported and given model 
(ΔAICc), Akaike weight (wi), the number of parameters (K), and sum of penalties (ΣPen) are 
displayed. Effective sample size (the number of model and field estimate comparisons used 
to estimate ΣPen) was 54 for all models. 

No Model AICc ∆AICc wi K ΣPen 
1 Sf=Sy, Sm Fa Sc Sc2 Sc3 187.50 0.00 0.94 9 165.41 
2 Sf=Sy, Sm Sc Sc2 Fa Fa2 190.77 3.27 0.04 10 165.65 
3 Sf=Sy, Sm Fa Sc Sc2 Sc3 Sf2 191.04 3.54 0.03 11 162.75 
5 Sf=Sy,  Fa Fa2 Fa3 218.00 30.49 0.00 8 198.80 
6 Sf=Sy, Sc  Sm Fa 221.04 33.54 0.00 6 207.26 

 

The most supported population model (Table 5: model 1) estimated cow and 
yearling survival at 0.90, bull survival at 0.85, and fecundity at 0.41 and mean calf survival 
of 0.44 (values ranging from 0.05-0.7). The fecundity estimate is probably the least reliable 
estimate since it is partially confounded with calf survival and includes young bison (aged 
three) that may have a lower chance of producing a calf. For example, it is possible that 
fecundity is higher than 0.41 and calf survival is lower. A safer interpretation of model 
results might be an estimate of productivity as calf survival times fecundity (Sc*Fa) which is 
displayed in Figure 6. A survey of calf:cow ratios in mid- to late June after peak of calving 
could provide additional information that would refine fecundity and calf survival 
estimates in this context by providing an initial estimate of the proportion of cows that 
gave birth to calves. 

Plots of model predictions for each field measurement revealed reasonable fit 
across the duration of the data with the cubic term in calf survival adequately fitting the 
directional trend in yearling:cow ratios (Figure 6). The directional trend in calf survival 
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marginally affected calf:cow ratios given that calf survival only influenced these ratios for 
the two month interval between birth and composition surveys. Yearling:cow ratios closely 
followed productivity as estimated by calf survival and fecundity which illustrates how this 
ratio is the best indicator of productivity. Estimated trends in abundance fit the limited 
field data well. Variation in productivity created slight curvilinear trends in herd size. The 
overall effect of known human-caused mortality levels on herd size was negligible. 

  

  
Figure 6. OLS model predictions (red line) compared to field estimates for composition 
surveys and abundance estimates. Other lines are noted in figure legends. 

Estimates of overall estimated abundance are given in Figure 6 which suggests a 
slow decline of each cohort over time (Figure 7).   
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Figure 7. Estimates of overall herd size from the OLS model (Figure 6).  

Estimated survival rates for the most supported OLS model included anthropogenic-
caused mortalities. We re-ran the model with this mortality subtracted from bull, cow, and 
yearling N estimates each year to estimate “natural survival rates” under the assumption 
that all anthropogenic mortality was known. We assumed that all hunting mortality was for 
male bison, and highway collisions occurred in equal proportions for cows, bulls, and 
yearlings. These are obviously simplified assumptions that could be eliminated if sex and 
age of bison were recorded for mortalities. Under this set of assumptions cow survival 
increased to 0.91 (from 0.90 with human mortality) and bull survival increased to 0.90 
(from 0.85 with human mortality). These estimates could be considered the “natural 
survival rate” needed to produce the observed trends when human-caused mortality is 
added in. 

Bayesian State Space Model 
The Bayesian state space analysis was done in collaboration with Joe Thorley of 

Poisson Consulting Ltd. (Nelson, British Columbia) (Thorley and Boulanger 2015). Details 
of the state space model analysis can be found in Appendix C. Below we summarize the 
main results of this exercise. 

The objectives of the state space model were to provide estimates of precision for 
model parameters and to explore potential relationships between demographic parameters 
and environmental covariates. A side objective of the state space model was to develop 
“observation models” for the composition survey data that model the statistical 
distribution of field data. Unlike the OLS approach, the Bayesian state space approach 
directly models the way data are collected including the fitting of specific probabilistic 
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distributions to field data types. This provides added flexibility in modeling and more 
flexibility in modeling various sources of variation in the data set.   

The Bayesian state space model used the same basic model formulation as the OLS 
model with some simplifications. The Bayesian model only considered the female segment 
of the population and therefore bull:cow ratios were not included in modeling efforts. As 
with the OLS model, yearling and adult survival estimates were set to be equal. In addition, 
mortality data were not included as an input data source. 

For the Bayesian approach, initial values of all parameters including initial 
population size were defined based upon field parameter estimates and initial values in the 
OLS model. In general, uninformative prior distributions of parameters were used given 
minimal information on the distribution of these values. Fitting of composition survey 
estimates was based upon an assumed over dispersed binomial distribution of calf:cow and 
yearling:cow ratios. Herd size estimates were assumed to be normally distributed. The 
basic process of the Bayesian model is to run repeated simulated trajectories of parameters 
with fitting achieved using a Markov Chain Monte Carlo process. This approach allowed 
estimates of parameter significance and confidence limits on parameter estimates.   

A model with constant adult and yearling survival but time varying calf survival (as 
a random effect) was used for the main analysis (Table 6) (which was similar to the most 
supported OLS model: Table 5). Parameter estimates were significant and reasonably 
precise as determined by narrow widths of confidence limits.   

Table 6. Estimate of demographic parameters from the state space model along with 
confidence limits (Lower, Upper), standard deviation (SD), error (half of the 95% 
confidence limit as a percent of the point estimate) and significance) 

Parameter Estimate Lower Upper SD Error Significance 
Adult and yearling survival (Sf and 
Sy) 

0.89 0.86 0.92 0.02 4 0.001 

Fecundity (Fa) 0.46 0.41 0.52 0.03 12 0.001 
Mean Calf survival (Sc) 0.44 0.32 0.60 0.07 31 0.001 
Temporal variation Sc (Random 
Effect) 

0.67 0.33 1.24 0.23 68 0.001 

Initial N adults 1780 1273 2303 259.00 29 0.001 
Initial N Yearlings  279.70 185.10 381.60 48.40 35 0.001 
Dispersion (Calf:cow ratios) 0.75 0.60 0.92 0.08 21 0.001 

 

It is important to note that precision in the context of the state space model can be 
thought of as “What level of variation in parameter values would create observed trends in 
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the data”? If data are sparse, for example very few herd surveys, then it is likely that there 
is variation in the data set that may not be detectable. In this case, precision of parameters 
such as adult survival may be an underestimate of true variation in the population. For 
example, it is possible that the variance of survival estimates may increase if yearly surveys 
are conducted which might result in further observed variance in herd size.  

Model predictions suggested reasonable fit to the data with time variation in calf 
survival but with other parameters held at constant levels (Figure 8). Yearling:cow ratios 
displayed a directional trend which was also indicated in the field data (Figure 4). As with 
the OLS model, variation in calf survival created only a small amount of variation in overall 
herd size. 

  

 
 

Figure 8. State space estimates of calf survival (upper left) and herd size (upper right) 
depicted by the solid lines. Error bars are ±95% credible intervals. Comparison of model 
predictions for calf:cow ratios (lower left) and yearling:cow ratios (lower right) with 
observations (bubbles proportional to group size for each observation). 

A preliminary attempt was made to associate variation in calf survival with 
environmental indicators. Screening revealed that winter severity index was correlated 
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with most winter indicators (snowfall, winter length). Rainfall and summer air 
temperature also formed distinct predictors compared to other potential covariates. Prior 
to model fitting, we standardized all explanatory covariates (Figure 9). 

 

Figure 9. Standardized environmental covariates. 

None of the environmental covariates were significant predictors of calf survival at 
α=0.05. PDO and summer rainfall were marginally significant with p-values of 0.14. In both 
cases a positive relationship was suggested (higher summer air temperature and rainfall 
increased calf survival).   

We note that this exercise was preliminary and not an exhaustive investigation of 
environmental factors that influence herd demography. For example, some studies have 
suggested that there are time lags between the effects of environmental factors and 
responses in demographic parameters (Brodie 2008). Our investigation did not consider 
time-lags or the full suite of potential environment covariates.   

Conclusions of Modeling Exercises 
In summary, this initial test of the OLS and state space integrated population models 

suggests that working population models of bison demography can be developed even in 
the absence of survival estimates from collar data. These models provide a method to 
better understand how composition survey estimates relate to overall herd size as well as 
estimates of survival rate and productivity for each age and sex class.   

Comparison of Estimates with Collar-based Studies  
We compared the estimates from models to a review of field studies (Table 7). 

Estimates of adult survival were slightly lower than many collar-based studies. However, 
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there are some key differences between the parameter estimates from this model and 
those from collar-based studies. First, estimates of adult survival from the integrated 
population models represent a mean average across all adult age classes of a given 
population whereas collar based studies often target older adults. Second, integrated 
population model estimates may be reduced slightly by lower yearling survival given the 
assumption that yearling and adult survival rates are equal. Also, adult survival rates from 
collar-based studies may or may not include anthropogenic mortality and are often of 
limited sample size. Finally, many of the studies of bison reviewed in Brodie (2008) were 
for increasing or stable populations, whereas the Mackenzie population was decreasing 
and therefore survival rates may be lower.  

Estimates of calf survival and fecundity from the models are confounded given that 
there are no direct measurements of fecundity; with the main measurement occurring two 
months after birthing occurs. This issue, as well as the fact that fecundity is averaged across 
all age classes (with varying pregnancy rates) make it difficult to compare fecundity 
estimates with pregnancy rates directly measured in field studies. For example, in some 
populations, females will only produce calves in alternate years which would effectively 
half estimated fecundity compared to a biologically-based pregnancy rate (Brodie 2008). 
Given these issues, the best estimate from modeling efforts may be productivity which is 
the product of calf survival and fecundity. This basically is a measurement of the 
proportion of yearling bison produced per adult female in the population.   
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Table 7. Comparison of OLS, state space model estimates and estimates from a review of 
studies (Brodie 2008) and a previous study of the Mackenzie bison herd (Larter et al 2000). 

Parameter Estimates 
Literature 

values Comments 

 
OLS State Space 

 
 

Adult female 
survival 

0.90 
 

0.89 
(CI=0.86-0.92) 

0.95-0.99A 

0.75-1.0B 

  

Adult male 
survival 

0.85 
 

 0.92-0.96A 

0.67-1.0B 

Bulls not considered in 
state space model 

Fecundity 0.41 
 

0.46 
(CI=0.41-0.52) 

0.37-0.89A 

 

Depends on female 
birthing interval/age 
structure 

Yearling 
survival 

0.90 
 

0.89 
(CI=0.86-0.92) 

0.55-0.99A 

 

Little information in 
literature 

Calf survival  0.44 
(range=0.05-

0.70) 

0.44 
(CI=0.32-0.60) 

0.25-1.0A 

0.49-0.63B 

Variable among 
populations 

Productivity 0.18 0.20  Product of calf survival 
and fecundity 

ABrodie 2008 
BLarter et al. 2000 
 

In summary, estimates from integrated population models should be compared 
cautiously with traditional collar-based studies given differences in how estimates are 
derived. A collar-based study may be advantageous to understand individual variation, 
specific causes of mortality, and drivers of overall demography. An integrated population 
model avoids collaring, considers all ages in estimation of vital rates, and provides an 
estimate that is based upon all indicators of herd demography. If collar data are available 
then it can be added as a data source to the integrated population model, therefore 
providing a more robust estimate than using each data source separately. 

Strengths and Weaknesses of Field Data are Highlighted 
This exercise highlights key limitations of data collected for NWT bison herds. First, 

most information about demography is for productivity and calf survival from yearly 
composition surveys. Second, limited information on bull and cow survival can be obtained 
from bull:cow ratios given the lower precision of these indicators due to segregation of 
bulls and cows during surveys. Finally, herd survey data were too sparse and infrequent to 
inform the model about trends in herd size beyond simple linear or exponential trends. 
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The most supported OLS and state space models had temporal variation in calf survival 
with other parameters held constant. For both OLS and state space models, variation in calf 
survival did not cause a large degree of variation in overall herd size (Figures 6-8). 
Interestingly, the variation in adult survival was low (CI=0.86-0.92) from the state space 
model. We suggest that this result was partially an artifact of sparse data to inform the 
model about variation in herd size due to variation in adult survival. If an objective of 
monitoring is to obtain robust estimates of adult survival then we suggest surveys should 
occur at more frequent intervals (i.e., bi-yearly or tri-yearly). In summary, this modeling 
exercise suggested the following modifications to field surveys should be considered: 

• Conduct biennial or triennial estimates of herd size to better inform models about 
survival rates and other factors affecting overall herd trend. The model would then 
be used to fill in information between surveys based on composition and other 
indicators. 

• Composition surveys that occur in early June would provide a better estimate of 
true fecundity and productivity of the herd.   

• To monitor productivity, composition surveys should be conducted annually to 
allow the most inference on calf survival by the comparison of change in sequential 
calf:cow and yearling:cow ratios. In addition, this will allow the greatest power to 
further assess the effect of environmental covariates on herd productivity.   

• As discussed in other sections of the report, collection of larger sample sizes from 
composition surveys would increase the precision and accuracy of bull:cow and 
other ratios 

• Mortality data should be classified by age and sex to allow it to be fully utilized in 
modeling efforts. 

OLS or State Space Model? 
We examined both the OLS and state space model results to allow a brief 

comparison of each of the methods. The strength of the OLS model is its simplicity and 
ability to efficiently explore dominant trends in parameter variation in the data set using 
AICc model selection. The weakness of this approach is that standard errors of model 
estimates are not directly obtainable in the present form of the model (but could be 
obtained using bootstrap resampling) and field data and associated residuals are assumed 
to be normally distributed. In addition, simplifying assumptions are required for model 
fitting, such as an initial stable age distribution. Despite these assumptions some authors 
argue this approach is adequate for management driven modeling exercises (White and 
Lubow 2002). 

The state space approach allows much more flexibility in how data types are 
modelled as well as various ways to model temporal trends in the data set such as random 
effects modeling (Kery and Schaub 2012). This allows robust estimates of model 
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parameters as well as methods to deal with specific issues and biases with each of the input 
data types. The main challenge of this approach is that it involves more complexity in terms 
of building observation models for each of the data types. An approach where initial models 
are built with OLS methods followed by more in-depth and comprehensive state space 
modeling is one way to facilitate model development. 

The following refinements should be considered for future modeling efforts: 

• The state space model could be developed to further consider bull:cow ratios and 
observation models for herd surveys.   

• The investigation of environmental covariates could be continued with data from 
other herds considered as well as a larger number of environmental covariates. 
Further consideration of time-lags in demographic response to environmental 
conditions should be investigated. 

• Data from previous analyses of the Mackenzie herd extending back to 1984 (Larter 
et al. 2000) would provide a much longer time series as well as radio collared bison 
data for refined survival rate estimation. Incorporation of these data into the 
analyses presented in this section would increase the power of the analysis to detect 
demographic trends as well as potential relationships with environmental 
covariates.   

• Further modeling could be used to assess changes in demography as a result of the 
recent anthrax outbreak. This work would be most productive if done a few years 
after the outbreak to allow exploration on the overall impact and likely recovery of 
the herd. 

In conclusion, the choice of modeling method and model formulation will be 
determined by management objectives and the limitations of field data. Regardless, this 
approach provides a useful tool to assist in assessment of herd status and interpretation of 
field data. 
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PART C: POWER ANALYSES OF ABUNDANCE SURVEYS 
 

This section provides further analysis and discussion about optimal monitoring 
strategies for bison with a focus on study design issues and associated power to detect 
change in population over time. We use results of past bison inventories to estimate power 
to detect population change as well as methods to increase power by study design, field 
implementation, and analysis methods. For this section it is assumed that distance 
sampling methods will be used for surveys.   

In terms of population demography we often quantify change in terms of annual 
change in population size. The actual ability of power to detect change in population size 
often takes years of time and with annual change being compounded yearly to produce a 
larger net change. For example, a population declining at 10% per year will be at 60% of its 
size in five years (Figure 10). In this context risk and associated sampling intensity to 
detect a decline would be based on current status of the population and the target level of 
decline that managers would like to detect.   

 
Figure 10. The relationship between annual change and cumulative change in population 
size as a function of the number of years surveys occur. Each line represents a different 
level of annual change. 

Precision of Bison Abundance Surveys 
The most recent estimates from bison surveys have been derived from distance 

sampling methods (Boulanger and Armstrong 2012, Boulanger and Armstrong 2013, 
Boulanger and Armstrong 2014). Precision of survey estimates has ranged from 16% for 
the pooled Mackenzie herd estimates (2012) to 40% for the pooled Slave River Lowlands 
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study (Figure 11). In general the precision of estimates for these two herds as indicated by 
the coefficient of variation is not proportional to abundance which is usually the case for 
distance sampling projects (Burnham et al. 1985, Gerrodette 1987).  

 

  
Figure 11. Estimates of precision (CV-coefficient of variation) as related to abundance 
estimates from the Slave River and Mackenzie bison surveys (Boulanger and Armstrong 
2012, Boulanger and Armstrong 2013, Boulanger and Armstrong 2014). 

The difference in precision of estimates between the Slave River Lowlands and 
Mackenzie herds is non-intuitive given similarities in sampling effort and higher densities 
of bison estimated from the Slave River study. As discussed in (Boulanger and Armstrong 
2014), low precision for the Slave River study was due to bison being observed 
sporadically in very large groups (>50 bison) which created a large degree of between-
transect variation in densities as well as other challenges in fitting detection functions 
(Figure 12). In addition, the number of lines surveyed for the Slave River study area (55) 
was lower than the number of lines surveyed for the Mackenzie study area (135; Boulanger 
2014a)). 

 

0%

10%

20%

30%

40%

50%

60%

0 500 1000 1500 2000

CV
 o

f a
bu

nd
an

ce
 e

st
im

at
es

Abundance estimates

Mackenzie strata Slave River strata

Mackenzie  pooled strata Slave River pooled

0%

10%

20%

30%

40%

50%

60%

0 5 10 15 20 25

CV
 o

f d
en

si
ty

  e
st

im
at

es

Density estimates

Mackenzie strata Slave River strata

Mackenzie  pooled strata Slave River pooled

♦ 

♦ 

♦ 

♦ • 
♦ ♦ 

-
♦ 

• .., 

• 
• 

• 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ ~ 

~ 

• 
♦ 

• 
• 

-
■ 



 

63 

Mackenzie (2012 and 2013) 

 

Slave River Lowlands 2014 

 
Figure 12. Distribution of group sizes for Mackenzie versus Slave River Lowlands bison 
surveys. 

 

Power Analyses of Abundance Surveys 
Power analyses were conducted for a design which involved annual surveys and a 

design which used t-tests to determine if there was a change in estimates between two 
surveys. The first approach would be most useful for a population that is at lower 
abundance and therefore required frequent monitoring. The second approach would be 
useful for initial years of a survey or for populations that were infrequently monitored.   

The key question asked for both approaches is the number of years required to 
detect a change (for annual surveys) or the number of years in which change would be 
detected under assumed rates of change in the population. For both these approaches it is 
assumed that management would be interested in detecting a given annual rate of change. 
For example, for general monitoring a reduction of 10-20% annually may be the threshold 
for management actions. For monitoring of diseases, the threshold may be larger. 

For annual surveys the power analysis formulas from Buckland et al. (2004a) were 
used to estimate power under a range of survey precision levels (CV) and annual rates of 
change ( λ=Nt+1/Nt). CV was assumed to be equal across different levels of abundance and 
therefore abundance was not explicitly simulated. The alpha level to detect a change was 
set at 0.2 and a power level of 0.8 was considered adequate for monitoring purposes. The 
underlying population trend was assumed to be log-linear. Two types of trend models were 
considered. The number of years to obtain adequate power, and the resulting cumulative 
change in the population was estimated for each combination of CV and λ. Analyses were 
conducted in R (R Development Core Team 2009) using base scripts developed by Len 

Canopy: full open semi

N
um

be
r o

f o
bs

er
va

tio
ns

0
20
40
60
80

100
120
140
160

Bison group size

5 1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0
5

1
1
5

1
2
5

Canopy Full Open
Semi-open

N
um

be
r o

f o
bs

er
va

tio
ns

0
10
20
30
40
50
60
70
80
90

100
110

Bison group size

5 1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0
5

1
1
5

1
2
5

c:::::J 
c:::::J 



 

64 

Thomas (Centre for Research into Ecological and Environmental Modeling and School of 
Mathematics and Statistics, University of St. Andrews, The Observatory, St. Andrews, 
Scotland). R package plot3d (Soetart 2014) was used to plot and summarize the power 
analysis data.   

For the sequential t-tests, a simulation method was used which simulated estimates 
from surveys under varying levels of CV, survey interval, and annual rates of change 
between surveys. The proportion of surveys in which a change was detected was used to 
estimate power. The degrees of freedom for t-tests were based on the Mackenzie bison 
survey assuming similar designs for each year. The number of years to obtain adequate 
power, and the resulting cumulative change in the population was estimated for each 
combination of CV and λ. Analyses were conducted using SAS statistical software with 
graphical summaries of the data plotted in R.   

Regression Analysis of Annual Surveys 
The formulas of Buckland et al. (2004a) mainly consider precision of the slope 

parameter in a regression equation with an underlying log-linear trend model. Two 
underlying error models were considered. First, a model that assumed fixed population 
sizes (no variation in lambda) was used for the primary analysis. This approach applies 
best to shorter-terms data sets. Second, a model that assumed an additional process 
variance component or random variation in lambda was used to assess how this additional 
source of variation affected power. 

Power analysis suggested that at least three years of data are required to detect an 
annual decline of 20% (λ=0.80) if the coefficient of variation is 10% or below (Figure 13). 
With the general range of bison surveys (CV=20%) then at least four to five years of annual 
surveys would be required. For plausible CV levels (≥15%) then at least three years of data 
are needed to detect declines in bison populations. 
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Figure 13. The number of years required to achieve adequate power to detect an annual 
rate of decline (λ) as a function of the coefficient of variation of annual estimates of 
abundance. 

 

These results can also be interpreted in terms of percent cumulative change in the 
population. In Figure 14, the percent change is represented by colour bands. From this it 
can be seen that CV levels of 0.15 are needed to detect small to moderate changes in 
abundance. Higher levels of CV require a longer time span of monitoring (>4 years) with 
resulting larger changes in population size. 
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Figure 14. The cumulative percent decrease in population size that would occur when 
power=0.8 to detect a given trend, as also indicated in Figure 13. Cumulative decrease (i.e., 
20% means the population is 20% lower than initial survey) is indicated by the colours and 
colour legend to the right of the graph. A small change of <30% is represented by blue, a 
moderate change of 30-50% is represent by light blue, a large change of 50-70% is 
represented by yellow, and very large change of >70% is represented by orange and red.   

 

Using t-tests of Successive Surveys 
Simulations of comparison of successive surveys using t-tests (Figure 15) suggested 

relatively similar results as the regression analysis (Figure 14). In general, power was 
similar as regression analyses for cases in which the interval between surveys was low. If 
surveys were imprecise (CV>40%) then power was reduced compared to regression 
approaches. For example, if CV=40% and the annual rate of decline was 0.8, then ten years 
would be required to detect a change in population size (Figure 15) whereas seven years 
would be required using the regression analysis approach (Figure 14). 
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Figure 15. The number of years required to detect a change in abundance using t-tests as a 
function of CV of estimates and annual rate of change. The numbers in the graph 
correspond to total years required to detect the change. Only years to detect change that 
are ten or less are displayed on the graph. 

The proportional decrease in population size based on years to detect power 
suggested that coefficients of variation of 0.15 would be needed to detect a 40% reduction 
in abundance. A coefficient of variations of 0.20 then would be able to detect a 50% decline 
in abundance (Figure 16). 
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Figure 16. The proportional decrease in population size (numbers in figure) as a function 
of annual rate of change, CV of estimates to detect the given annual rate of change (Figure 
13).  

For increasing populations, a coefficient of variation of 0.15 would detect a 60% 
increase in abundance in two years (Figure 17). 

 
Figure 17. The proportional increase in population size as a function of annual rate of 
change, CV of estimates, and corresponding years to detect the change as indicated by 
colour of text (Figure 13). 
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CV for bison surveys range from 16-40% (Figure 11) suggesting that large changes 
in abundance would occur before they are detected statistically. The optimal survey 
interval will therefore depend on what change would cause a management action and if the 
coefficient of variation of surveys can be improved to increase power. We suggest that a 
target coefficient of variation of 15% is optimal with a survey interval of three years. This 
would detect moderate changes (20% annual change) in abundances. The similarity in 
power between regression and sequential t-tests for shorter time intervals also suggests 
that the increase in power from annual surveys may not be worth the extra survey effort. 

Power analyses also suggest that large-scale changes (40% reduction) in population 
size caused by disease outbreaks would be detected in short intervals. For example, the 
Mackenzie anthrax outbreak caused an annual rate of change of 0.46 (or a 54% reduction 
in population size) from 2012-2013. This change would be detected by annual surveys as 
long as coefficients of variation were less than 0.20 (Figure 14). 

We note that power analysis results suggest that just monitoring abundance may 
not provide enough feedback on population size and demography, and therefore a strategy 
that considers multiple sources of indicators should be considered as discussed in Base Life 
History Model of this report. 

 

Recommendations to Increase Survey Power and Precision.  
The main methodology used for recent surveys in the Mackenzie and Slave River 

Lowland herds has been distance sampling. This approach provides the best estimates of 
methods available if it can be assumed that sightability near the aircraft is one and field 
sampling is conducted properly. There are various ways this method can be enhanced to 
allow estimates of higher precision which are detailed below.   

Design-based Improvements 

Increasing Survey Effort 
One method to increase survey precision is to simply fly more survey lines by 

decreasing the transect spacing and increasing kilometers flown. Buckland et al. (1993) 
provides formulas to determine the potential increase in precision by increasing the 
relative survey effort of total kilometers flown. The equation that is used considers the total 
kilometers flown in the current survey effort, the CV of density achieved, the mean and 
standard deviation of group size, and the total numbers of groups observed. From this it is 
possible to determine the approximate amount of effort required to increase precision.   

Results from the Mackenzie 2012 and 2013 surveys indicate that if a target level of 
precision (CV) is 15% then survey effort would need to be 1.25 and 2.12 times greater for 
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the 2012 and 2013 Mackenzie herd surveys (Figure 18). Effort would need to be 6.42 times 
greater for the Slave River Lowlands study which is clearly not possible within a single 
survey. Basically, the low precision of the Slave River survey which was partially caused by 
difficulty in fitting detection functions is difficult to overcome just by increasing survey 
effort. Therefore, the best strategy for the Slave River study area is to improve field 
collection methods as well as consider analyses strategies to increase survey precision 
rather than increasing survey effort (discussed next). 

 
Figure 18. Estimated change in precision due to increasing relative survey effort. The 
coefficients of variation achieved by each project are denoted by large red symbols. Power 
analysis suggests that a CV level of 0.15 is optimal. 

Stratification and Post-stratification 
Stratification can be used to increase survey precision by allocating more effort to 

strata that have higher densities or have more variability in density. For the recent 
Mackenzie and Slave River surveys, all strata received similar sampling effort regardless of 
density. Bison distribution is not uniform across the landscape, and traditional and local 
knowledge can help inform bison distribution regarding habitat selection, movement 
corridors, and centres of activity (Mitchell 2002). To determine potential gains due to 
stratification we used estimates from existing surveys to perform optimal allocation of 
survey effort. Optimal allocation estimates the best allocation of survey effort to maximize 
overall estimate precision. We then evaluated the relative increase or decrease in sampling 
effort for consistency across years and strata. We used allocation formulas based on 
density and standard error of estimates (Thompson 1992, Krebs 1998) from past aerial 
surveys.  
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Results suggested that effort could be reduced in the North stratum for the 
Mackenzie 2012 and 2013 surveys with allocation using density and standard error of the 
estimates (Table 8). However, there was less of a consistent result for East and West strata 
with higher and lower levels of effort suggested for each stratum and year combination. 
Therefore, it can be concluded that effort should not be changed for these strata given the 
degree of yearly variation in densities and distribution.   

For the Slave River survey, an increase in effort was suggested for the East stratum 
compared to the West stratum given the higher densities and lower precision of the East 
estimates. This result was possibly due to the large degree of variation in cluster size for 
the East stratum.   

Table 8. Results of allocation exercise on survey results. The estimates of abundance (N), 
Density, and CV for each survey, and strata area and number of transects surveyed is 
compared to that based upon allocation using abundance (N) and survey precision (SE). 
The percent difference for SE and number of transects (D) between allocation and actual 
transects surveyed is given. 

Survey statistics 
  

 
  

Allocation 
  

 
Estimates Sampling effort Transects % difference 

Strata N SE(N) Density 
 

CV 
Area 

(km2) 
No. 

transects SE D SE D 
Mackenzie 2012 

  
 

      East 755 148.3 7.02 0.20 10763 83 78 66 94% 79% 
North 116 43.7 2.89 0.38 4012 75 39 46 52% 61% 
West 659 179.3 11.73 0.27 5623 66 94 109 142% 165% 
Mackenzie 2013 

  
 

      East 432 120.49 4.01 0.28 10763 83 103 82 124% 99% 
North 57 31.97 1.43 0.56 4012 75 46 49 61% 65% 
West 225 61.99 4.00 0.28 5623 66 52 81 79% 123% 

Slave River 2014 
  

 
      East 715 351.9 22.99 0.49 3112 42 55 46 132% 109% 

West 368 130.3 11.82 0.35 2290 41 23 36 56% 88% 
 

Field-based Improvements 
Distance sampling methods are potentially sensitive to deviations from survey 

protocol which can result in sighting distributions which are not easily described by 
detection functions and associated covariates. Therefore, proper training of observers and 
recorders as well as pilots of aircraft is essential to ensure reliable estimates. If this is done 
then a simpler detection model can be used (with fewer parameters) which will result in a 
more precise and robust estimate. Some of the main issues with previous surveys are now 
discussed with recommendations for improvement. 
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Observer, Pilots and Recorders should go Through a Distance Sampling Training 
Session before Survey 

The level of precision for distance sampling is directly related to the complexity of 
models needed to fit detection functions to the data. Some factors such as canopy closure 
and bison group size are hard to control. Other factors, such as observer attentiveness to 
areas near to the plane can be optimized so that a simpler detection function model can be 
used which will result in higher estimate precision. A brief, possibly online tutorial should 
be given to familiarize the observers with the fundamentals of distance sampling and 
appropriate observation methods. This will ensure that additional/unnecessary variance is 
not introduced into the data set. 

If data are recorded using tablet computers it would also be possible for results to 
be evaluated after each day of the survey. Even a plot of a basic histogram of detections can 
be used to diagnose potential issues and provide feedback to observers during the survey. 

The Pilot and Recorder Should be Independent of the Observers 
The pilot and navigator have different views than observers. Distance methods are 

mainly based upon observers peering out perpendicular to the transect. Therefore, various 
forms of bias can be introduced if the pilot or navigator see bison and influence the 
observers. One approach might be to use separate intercoms so the pilot and navigator do 
not influence the observers. Alternatively, the navigator/data recorder could simply not 
call out observations until the group has past. This would then allow collection of a double 
observer data set that could be used to model detection probabilities close to the line 
(Borchers et al. 1998, Laake et al. 2008, Buckland et al. 2010, Boulanger et al. 2014). In 
general, pilots are less trained than other observers and will have a field of vision that is (or 
should be) influenced by the area in front of the plane. This does not correspond well to 
distance sampling. Therefore, it may make sense to not include the pilot and 
navigator/data recorder in the survey or record their observations separately.   

Observations should be assigned to Only One Observer 
Observations should be assigned to the primary observers that are situated on each 

side of the plane. If the bison groups are also seen by the pilot and observer then they can 
be assigned as a secondary observation. This ensures that differences in primary observers 
are modelled efficiently.   

Observers Should Only Observe Bison from the Survey Line 
Observations for distance sampling should only occur from the sampling transect 

line. If groups are found when the aircraft is off the transect line such as when taking a 
waypoint to mark the location of the animal observed then biases, such as elongated tails of 
the distribution of sightings can occur. We suggest that observers be told to “take a break” 
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during way-pointing so that they do not look for bison further from or along the transect 
line.   

Field Methods Should Ensure that Observations are Independent 
Transect sampling could be conceptualized as taking a snapshot of each line in a 

similar way as quadrat sampling. Therefore, detection of bison or counting of bison on one 
line should not influence the detection of bison on other lines. This can be challenging if 
open habitat is being surveyed and line spacing is close together. As shown in the Slave 
River report (Boulanger 2014b), it is completely possible that a group of bison may be seen 
on two adjacent lines. This will not cause bias as long as the sighting on one line does not 
influence the sighting on the other line. Furthermore, recorders should always record 
observations even if the bison were seen previously. The best way to ensure independence 
is to survey every other line while flying away from the survey base and then survey the 
other lines on the way back to the survey base. This will reduce the chance that observers 
and recorders remember bison groups from adjacent lines. 

Sightability Close to the Plane Should be Tested Especially for Closed Canopy 
Habitats 

A fundamental assumption of distance methods is that sightability on the line is 
equal to one. If it is not close to one then estimates may be biased as well as less precise. 
We suggest that a plane capable of seating two observers on each side be used for a trial 
survey to estimate sightability on the survey line. This approach would use double 
observers to call out bison groups before the plane flies to waypoint the groups. An analysis 
would then be used to estimate sightability on the line as a function of habitat type and 
other factors.   

If a larger proportion of habitat in the survey area is closed canopy, such as within 
the Nahanni herd range (Larter and Allaire 2013b), then it is possible that some bison will 
have very low or 0 sighting probabilities due to forest cover. In this case double observer 
methods may not accurately estimate detection probabilities since it is assumed that all 
bison have a non-zero probability of detection. The best method to estimate detection in 
this case is mark-resight or sightability models which use collared or marked bison  
(i.e., paintballs) to estimate proportion of bison not observed. Peters et al. (2014) used 
sightability models to estimate sighting probabilities of moose near the survey plane and 
then applied the sightability estimate to scale the distance sampling detection function. 
This approach does require a suitable sample of marked bison. We note that mark-resight 
methods with covariates (McClintock and White 2010) can be used to efficiently estimate 
detection rates of bison in forested habitats. Simulations can be used to assess sample sizes 
of bison needed to estimate detection rates. 
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Analysis Improvements 

Use of Covariates to Describe Variation in Detection 
Factors such as observer, weather conditions, vegetation cover, and snow cover can 

all affect sightability of bison. Noting of each factor for bison observations allows the 
testing and modeling of factors that influence sightability. As noted previously, data 
recorders should attempt to make sure that each factor is recorded consistently within 
each survey and between surveys so that this information can be used to its fullest extent 
in the analysis. 

Meta-analyses of Data from Different Studies 
One of the main limiting factors of distance sampling is obtaining large enough 

sample sizes to model detection functions, especially for areas where bison density is 
lower. One approach to confront this challenge is pooling data sets across surveys to 
increase sample sizes with resulting increases in precision. For example, the original 
Mackenzie density estimate from 2012 had a CV of 0.199 (Boulanger and Armstrong 2012) 
which was reduced to 0.167 when the 2013 survey data was added to the analysis 
(Boulanger and Armstrong 2013). Combining data sets will not cause bias in estimates as 
long as the primary differences in sightability between surveys are accounted for in the 
analysis. Therefore the success of this approach will be determined by how well survey 
methods are standardized and how well factors that influence sightability are recorded 
during surveys.   

We note that the meta-analysis modeling methodology explicitly tests for 
differences in sightability between surveys as part of the modeling process. For example, 
the fit of models that assume unique detection function shapes for each project is 
compared to a model with pooled detection functions and covariate models. Therefore, this 
method can account for differences between surveys (i.e., a survey area with more open 
habitat) while helping confront issues with low sample sizes from individual projects. 

Density Surface Modeling 
Density surface modeling (Miller et al. 2013) can increase estimate precision as well 

as explain observed patterns of distribution within the study area. A density surface model 
attempts to explain variation in density of bison observed with habitat and other spatial 
covariates obtained by GIS analysis of the data set. By using this approach it is possible to 
account for or explain variation in distribution within the study area, therefore decreasing 
variance compared to non-spatial analyses that assume constant density within the study 
area. In addition, density surface model maps, which show estimates of density within the 
study area, can identify areas of high use and habitat value which can be useful for 
delineation of conservation areas.   



 

75 

One initial question was whether bison distribution was associated with forest 
cover classes in bison study areas. To initially test this assumption the Government of the 
NWT categorized the habitat class that bison were observed in during aerial transect for 
the Slave River study and also estimated the area of each habitat class within the Slave 
River study area. The proportion of observations and the proportion of bison counted in 
each habitat class were then compared to the proportional area of each class. If bison were 
occurring randomly or with no selection it would be expected that these proportions would 
be similar. If not then it is likely that bison were selecting for or against habitat classes. 
These distribution shifts could be described with density surface modeling. 

Graphical analysis suggested that larger proportions of bison groups or individual 
bison were higher in shrub and lower for white spruce and pine compared to proportional 
area for the East stratum. For the West stratum, counts of individual bison and bison 
groups were higher in deciduous and lower for white spruce compared to proportion of 
area (Figure 19). Without a statistical analysis it is hard to determine the significance of 
these proportions. However, these preliminary results support the application of a density 
surface model to better explain variation in distribution and potentially reduce the 
variance of overall density estimates. 

Comparable data on habitat selection can be obtained from local knowledge. In the 
Greater WBNP ecosystem community members indicated that bison rapidly establish trails 
along the most direct and practical route between favoured habitat patches, prefer 
graminoid meadows, have an affinity for burned areas, and typically avoid muskeg, dense 
forest, and steep terrain (Mitchell 2002). The edges of large meadows are used in summer 
because the centre is often too wet for travel, but the wet centres of meadows are used in 
the winter when the ground is frozen. Movement through poor habitat is generally rapid as 
the animals search for favourable habitat. 
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East stratum 

 
 
 
West stratum 

 
 
Figure 19. A comparison of the proportion bison groups (Groups) or bison counted (Bison) 
occurring in each habitat class compared to the proportion of area (Area) in each habitat 
class in the East and West stratum of the Slave River Lowlands 2014 study area. 
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SUMMARY 
 

This report provides a set of options for monitoring bison populations in the NWT. 
We provide a summary of recommendations based on objectives outlined in the original 
request for proposal in Table 9. 

One of our main conclusions is that management should be based on use of all 
population indictors. If there are estimates of population size, survival estimates, and 
recruitment rates then it is possible to fit multiple-data source models to further model 
demography and population trends (Buckland et al. 2004, Johnson et al. 2010, Boulanger et 
al. 2011) as demonstrated in the Base Life History Model section of this report. These 
approaches do not require annual surveys or annual measurements for any of the 
demographic indicators. They can accommodate sample biases with indicators, such as the 
effects of differential survival of calves and cows on calf:cow ratios, and can also 
incorporate harvest data (Boulanger et al. 2011). This approach utilizes all the data sources 
in a unified analysis therefore maximizing inference when compared to stand-alone 
interpretation of single data sources. This approach is most powerful if temporal covariates 
that relate to demography can be collected and used to describe temporal variation in 
model parameters. 

A variety of methods are available to estimate abundance and density of bison. Of 
these, distance sampling is most advantageous because it does not involve marking 
individual bison but still allows an estimate of detection probability needed to ensure 
robust estimates. It also allows further modeling of density within the survey area using 
density surface modeling. The main challenge for distance sampling is collection of field 
data that meets distance sampling assumptions as well as confronting variation in density 
due to aggregation of bison into larger groups. We provide a set of recommendations to 
improve field collection methods including the use of double observer methods on a trial 
basis to test whether sightability near the plane is equal to 1 in closed cover habitats. We 
suggest that density surface modeling may be one approach to improve estimate precision 
when precision is poor due to uneven density of bison in sampling areas.   

Hauser et al. (2006) suggested that annual surveys of abundance are only needed if 
the results of the survey will directly affect management actions or if populations are near 
critical status thresholds, and they recommended the use of population models as a 
secondary means to evaluate status. Power analyses suggest that annual abundance 
surveys are unlikely to detect year-to-year changes in population size. Anthrax outbreaks 
(detected by summer surveillance flights) will trigger the need for more intensive 
monitoring, but otherwise abundance should not change dramatically from year to year 
(one exception may be starvation due to severe winter/spring weather). Given likely rates 
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of change and levels of survey precision, we suggest that a three year sampling interval be 
used for surveys. Intervals for abundance surveys could vary with population size; less 
often at higher numbers, more often at lower numbers (similar principle to monitoring for 
the Bathurst caribou herd; Bathurst Caribou Management Planning Committee 2004). As 
noted above, composition surveys, surveillance flights to detect anthrax outbreaks, and 
multiple-data source models can be used to infer likely population status in years between 
abundance surveys. Exceptions to this pattern would occur if population size is low which 
would suggest that population viability could be impacted by stochastic events or adversely 
affected by typical mortality sources. 

Composition surveys are useful indicators but they require a suitable sampling 
design to ensure a random or representative sample of herd structure. Results from 
bootstrap resampling of composition data suggests that at least 30 groups should be 
sampled to obtain adequate precision of composition survey data. It is also suggested that 
the composition data be combined with other data in an integrated population model 
which should allow better inference on actual trends in demography. 
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Table 9. A summary of recommendations based on objectives listed in the RFP document 
(Literature review). Hyperlinks to applicable sections in the report can be followed by 
pressing the control button while selecting each link. 

Objective Recommended methodology 
Detect changes in 
population size 

• Aerial transect distance sampling methods. 
• Supplement distance sampling with sightability models or mark 

resight methods if canopy closure obscures a high proportion of 
bison. 

• Analyze trend with regression methods, or t-tests of successive 
surveys. 

• Survey interval of 3 years if survey precision can be improved to 
a CV of 15%. 

• Infer trend between abundance surveys using an integrated 
population model with covariates. 

Estimate age and 
sex-specific 
survival and 
productivity 

• Composition surveys with estimates of precision to estimate 
productivity, age class and adult bison survival through an 
integrated population model. 

• Composition surveys need to sample at least 30 groups to 
ensure adequate precision of estimates. 

• Estimates of productivity could be enhanced by composition 
surveys after the peak of calving (most likely in late June) to 
assess proportion of calves produced each year for the 
integrated population model. 

Monitor 
movements, 
range, and habitat 
selection. 

• Density surface modeling from transect surveys using habitat 
covariates. 

• Resource selection function or occupancy modeling for broad 
scale shifts in distribution. 

Detect mortality 
events especially 
anthrax outbreaks 

• Power analyses suggest that large changes in population size can 
be detected within the recommended three year survey interval. 

• Covariates such as weather may help predict likely conditions 
for disease outbreaks. 

• The integrated population model estimates calf and yearling 
survival from composition surveys therefore detecting potential 
decreases in calf or yearling survival if surveys are conducted 
annually. 

Estimate 
probabilities of 
detection on 
aerial surveys 

• Aerial transect distance sampling methods estimates detection 
probabilities, encounter rates, and group sizes. 

• Supplement with sightability models or mark resight methods if 
canopy closure obscures a high proportion of bison. 

• A simulation study could be used to estimate survey effort 
needed to ensure detection of individuals in surveillance areas. 
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APPENDIX A: TRADITIONAL KNOWLEDGE SOURCES ACCESSED FOR 
NORTHERN BISON REVIEW 

Note: Annotated bison traditional knowledge literature review list available from authors. 

In addition to those sites listed below the Yellowknife Public Library and the ENR-ITI 
Shared Library were visited.   

 

The Arctic Institute of North America, The Arctic Science and Technology 
Information System (ASTIS) database 
www.aina.ucalgary.ca/astis/ 

1 

Anthropological Papers of the American Museum of Natural History 
http://digitallibrary.amnh.org/dspace/handle/2246/6  

2 

AUSPACE Athabasca university  
http://auspace.athabascau.ca/handle/2149/1528 

3 

Elder Interviews Golder Assoc 2008 
www.total-ep-
canada.com/upstream/documents/Additional_Information/AIR_July2010/Append
ix_A_Wood_Buffalo.pdf 

4 

Wood Buffalo National Park Management Plan 2010 
www.pc.gc.ca/eng/pn-np/nt/woodbuffalo/plan/plan1.aspx 

5 

Aurora Research Institutes NWT Research Database 
http://nwtresearch.com/licensing-research/nwt-research-database 

6 

Yellowknife Public Library (all NWT libraries) 
www.yellowknife.ca/en/living-here/public-library.asp 

7 

The Canadian Association of Geographers 
www.cag-acg.ca/files/pdf/agm/2012_AGM_program.pdf 

8 

GNWT Department of Environment and Natural Resources www.enr.gov.nt.ca 
www.enr.gov.nt.ca/sites/enr/files/reports/bison_movements_distribution.pdf 

9 

Bison Producers of Alberta resource library  
www.bisoncentre.com 

10 

Athabasca Cree First Nations 
www.acfn.com 

11 

University of Ottawa 
www.uottawa.ca/ie/English/Research/IE-bison%20summary_e.pdf 

12 

www.wildlifecollisions.ca/woodbisonresources.htm 13 
Mountain Forum 
www.mtnforum.org/sites/default/files/publication/files/1418.pdf 

14 

ENR-ITI Shared Services Library 
http://g92011.eos-intl.net/G92011/OPAC/Index.aspx 

15 
 

http://www.aina.ucalgary.ca/astis/
http://digitallibrary.amnh.org/dspace/handle/2246/6
http://auspace.athabascau.ca/handle/2149/1528
http://www.total-ep-canada.com/upstream/documents/Additional_Information/AIR_July2010/Appendix_A_Wood_Buffalo.pdf
http://www.total-ep-canada.com/upstream/documents/Additional_Information/AIR_July2010/Appendix_A_Wood_Buffalo.pdf
http://www.total-ep-canada.com/upstream/documents/Additional_Information/AIR_July2010/Appendix_A_Wood_Buffalo.pdf
http://www.pc.gc.ca/eng/pn-np/nt/woodbuffalo/plan/plan1.aspx
http://nwtresearch.com/licensing-research/nwt-research-database
http://www.yellowknife.ca/en/living-here/public-library.asp
http://www.cag-acg.ca/files/pdf/agm/2012_AGM_program.pdf
http://www.enr.gov.nt.ca/
https://www.enr.gov.nt.ca/sites/enr/files/reports/bison_movements_distribution.pdf
http://www.bisoncentre.com/
http://www.acfn.com/
http://www.uottawa.ca/ie/English/Research/IE-bison%20summary_e.pdf
http://www.wildlifecollisions.ca/woodbisonresources.htm
http://www.mtnforum.org/sites/default/files/publication/files/1418.pdf
http://g92011.eos-intl.net/G92011/OPAC/Index.aspx
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APPENDIX B: COMPOSITION ESTIMATES WITH CONFIDENCE LIMITS 
 

Composition estimates with standard error (SE) and confidence limits (low, high) 
from bootstrap resampling. The number of groups sampled each year (n) is given also. 

Year n Calf:cow  Yearling:cow Bull:cow  
    CC SE low high YC SE low high BC SE low high 
Mackenzie herd       
1999 31 0.43 0.07 0.33 0.60 0.31 0.03 0.25 0.38 0.94 0.33 0.67 1.74 
2000 34 0.29 0.04 0.21 0.38 0.18 0.03 0.13 0.26 0.75 0.14 0.60 1.15 
2001 27 0.37 0.03 0.32 0.42 0.22 0.02 0.17 0.26 0.75 0.17 0.51 1.19 
2002 26 0.19 0.04 0.15 0.28 0.17 0.03 0.10 0.21 0.91 0.35 0.56 1.88 
2003 28 0.42 0.05 0.31 0.51 0.08 0.02 0.05 0.12 0.89 0.28 0.65 1.72 
2004 19 0.39 0.04 0.34 0.51 0.13 0.04 0.05 0.22 0.63 0.15 0.48 1.00 
2006 28 0.37 0.08 0.24 0.56 0.17 0.02 0.13 0.22 0.78 0.15 0.54 1.10 
2007 36 0.48 0.03 0.41 0.55 0.16 0.02 0.13 0.22 0.92 0.33 0.60 1.80 
2008 17 0.33 0.10 0.21 0.58 0.26 0.06 0.15 0.37 1.21 0.62 0.73 2.37 
2009 34 0.41 0.06 0.29 0.54 0.25 0.02 0.20 0.29 0.97 0.30 0.63 1.89 
2011 12 0.38 0.05 0.28 0.48 0.28 0.04 0.21 0.37 0.88 0.27 0.50 1.58 
2013 8 0.11 0.07 0.00 0.18 0.09 0.07 0.05 0.33 0.87 0.17 0.40 1.16 
2014 8 0.62 0.15 0.25 0.80 0.00 0.00 0.00 0.00 1.54 1.01 0.46 5.00 
Nahanni           
1999 6 0.25 0.12 0.00 0.43 0.11 0.06 0.02 0.24 0.64 0.36 0.49 1.44 
2002 13 0.14 0.18 0.00 1.00 0.14 0.07 0.00 0.24 1.14 0.90 0.65 3.29 
2003 16 0.56 0.04 0.50 0.68 0.10 0.05 0.00 0.21 0.82 0.30 0.56 1.69 
2004 13 0.42 0.06 0.29 0.50 0.31 0.06 0.14 0.39 0.76 0.71 0.56 2.07 
2005 21 0.28 0.06 0.13 0.38 0.26 0.07 0.11 0.38 1.02 0.42 0.67 1.85 
2006 24 0.47 0.08 0.24 0.58 0.25 0.06 0.11 0.34 1.21 1.17 0.81 3.00 
2007 20 0.41 0.10 0.27 0.67 0.20 0.05 0.13 0.31 0.95 0.12 0.73 1.24 
2008 24 0.39 0.05 0.27 0.48 0.28 0.07 0.12 0.39 0.84 0.21 0.60 1.31 
2009 19 0.43 0.10 0.23 0.65 0.27 0.05 0.15 0.35 0.86 0.54 0.68 1.60 
2010 23 0.36 0.04 0.26 0.44 0.29 0.03 0.22 0.35 1.09 0.58 0.78 2.54 
2011 29 0.42 0.08 0.28 0.61 0.18 0.06 0.04 0.25 0.65 0.18 0.52 1.12 
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Slave River Lowlands         
1999 18 0.15 0.09 0.00 0.21 0.19 0.07 0.00 0.21 3.74 12.84 1.54 49.00 
2000 8 0.37 0.11 0.00 0.38 0.15 0.05 0.00 0.17 0.52 5.52 0.40 24.00 
2002 7 0.41 0.17 0.25 0.91 0.18 0.06 0.00 0.23 0.63 3.49 0.33 4.00 
2003 15 0.54 0.07 0.38 0.64 0.31 0.06 0.24 0.46 0.99 2.94 0.54 3.88 
2004 15 0.64 0.09 0.42 0.76 0.28 0.07 0.16 0.41 0.66 0.20 0.46 1.29 
2008 23 0.30 0.03 0.23 0.36 0.11 0.03 0.06 0.16 0.62 0.09 0.47 0.82 
2009 32 0.31 0.06 0.18 0.43 0.21 0.06 0.09 0.32 0.86 0.40 0.43 1.95 
2011 14 0.28 0.04 0.25 0.39 0.11 0.06 0.06 0.25 0.98 0.69 0.77 2.72 
2014 13 0.27 0.05 0.19 0.36 0.12 0.02 0.07 0.15 1.49 0.91 0.86 3.83 
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APPENDIX C: MACKENZIE WOOD BISON POPULATION DYNAMICS 
ANALYSIS 2015 

 

Draft: 11 May 2015 

Suggested Citation: Thorley, J.L. and J. Boulanger. 2015. Mackenzie Wood Bison Population 
Dynamics Analysis 2015. A Poisson Consulting Analysis Report.  
URL: www.poissonconsulting.ca/f/164478860. 

The source code is available on GitHub. 

Background 
The Mackenzie wood bison (Bison bison athabascae) herd abundance has been 

estimated in four years since 1999 while herd composition data have been collected in all 
but three years. The herd composition data are collected in July while the abundance 
estimates are from March. 

The primary questions this analysis attempts to answer are: 

• What is the survival of calves, yearlings and adult in the Mackenzie herd? 
• Is survival of calves in the Mackenzie herd driven by climatic conditions? 

Methods 

Data Preparation 
The data were provided by the Government of the Northwest Territories. 

In 2012 the herd experienced high mortality due to an anthrax outbreak. 
Consequently, the 2013 and 2014 data were excluded. 

Statistical Analysis 
Hierarchical Bayesian models were fitted to the data using R version 3.2.0 (Team 

2013) and JAGS 3.4.0 (Plummer 2012) which interfaced with each other via jaggernaut 
2.2.10 (Thorley 2013). For additional information on hierarchical Bayesian modeling in the 
BUGS language, of which JAGS uses a dialect, the reader is referred to Kery and Schaub 
(2011, 41–44). 

Unless specified, the models assumed vague (low information) prior distributions 
(Kery and Schaub 2011, 36). The posterior distributions were estimated from a minimum 
of 1,000 Markov Chain Monte Carlo (MCMC) samples thinned from the second halves of 
three chains (Kery and Schaub 2011, 38–40). Model convergence was confirmed by 
ensuring that Rhat (Kery and Schaub 2011, 40) was less than 1.1 for each of the parameters 

http://www.poissonconsulting.ca/f/164478860
https://github.com/poissonconsulting/mackenzie-bison-15
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in the model (Kery and Schaub 2011, 61). Model adequacy was confirmed by examination 
of residual plots. 

The posterior distributions of the fixed (Kery and Schaub 2011, 75) parameters are 
summarised in terms of a point estimate (mean), lower and upper 95% credible limits 
(2.5th and 97.5th percentiles), the standard deviation (SD), percent relative error (half the 
95% credible interval as a percent of the point estimate) and significance (Kery and Schaub 
2011, 37, 42). 

Variable selection was achieved by dropping insignificant (Kery and Schaub 2011, 
37, 42) fixed (Kery and Schaub 2011, 77–82) variables and uninformative random 
variables. A fixed variable was considered to be insignificant if its significance was ≥ 0.05 
while a random variable was considered to be uninformative if it’s percent relative error 
was ≥ 80%. 

The results are displayed graphically by plotting the modeled relationships between 
particular variables and the response with 95% credible intervals (CRIs) with the 
remaining variables held constant. In general, continuous and discrete fixed variables are 
held constant at their mean and first level values respectively while random variables are 
held constant at their typical values (expected values of the underlying hyperdistributions) 
(Kery and Schaub 2011, 77–82). Where informative the influence of particular variables is 
expressed in terms of the effect size (i.e., percent change in the response variable) with 95% 
CRIs (Bradford, Korman, and Higgins 2005). 

Model Description 
The following model description observes several conventions. 

The survival between life stages was estimated using a hierarchical Bayesian 
population dynamic state-space model (Kery and Schaub 2011). Key assumptions of the 
population dynamic model include: 

• A 50:50 sex ratio. 
• Constant probability of a female adult calving. 
• Annually varying calf survival. 
• Calf survival is able to vary with the Pacific Decadal Oscillation Index. 
• Constant and identical yearling and adult survival. 
• Clustering of cows with and without calves. 
• Each year runs from May 15 to May 15. 
• Survival does not vary seasonally. 

In addition the effect of various environmental variables on calf survival was tested by 
adding a standardised covariate to the population dynamic model. 

http://www.poissonconsulting.ca/modeling/model-description-conventions.html
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Model Code 
The JAGS model code, which uses a series of naming conventions, is presented below. 

Population Dynamic 
Variable/Parameter Description 

bAdults[i] Number of adults at the start of the ith year 

bAdults1 Number of adults at the start of the first year 

bCalves[i] Number of calves at the start of the ith year 

Bison[i] The ith herd size estimate 

bProductivity Probability of a female adult calving 

bSurvivalAdult Adult and yearling survival 

bSurvivalCalf Calf survival 

bYearlings[i] Number of yearlings at the start of the ith year 

bYearlings1 Number of yearlings at the start of the first year 

Calves[i] Number of calves in the ith composition observation 

Cows[i] Number of cows in the ith composition observation 

Dayte[i] Day of the year of the ith composition observation 

eCorrection Survival correction for the timing of the herd size estimates 

eProportionCalves[i] Expected proportion of cows with a calf in the ith composition 
observation 

eProportionCowsYearlings[i] Expected proportion of cows and yearlings that are cows in the ith 
composition observation 

eSurvivalCalfYear[i] Calf survival from the ith to i+1th year 

sDispersionCalves SD of the extra-binomial variation in cow with calf clustering 

sSurvivalCalfYear SD of the effect of year on bSurvivalCalf 

YearBison[i] The year of the ith herd size estimate 

YearlingsCows[i] Number of yearlings and cows in the ith composition observation 

Population Dynamic - Model1 

model{ 
 
  bProductivity ~ dunif(0, 1) 
  bSurvivalAdult ~ dunif(0, 1) 
  bSurvivalCalf ~ dunif(0, 1) 
 
  sSurvivalCalfYear ~ dunif(0, 2) 

http://www.poissonconsulting.ca/modeling/jags-model-code.html
http://www.poissonconsulting.ca/modeling/jags-model-conventions.html
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  for(i in 1:nYear){ 
    bSurvivalCalfYear[i] ~ dnorm(0, sSurvivalCalfYear^-2) 
    logit(eSurvivalCalfYear[i]) <- logit(bSurvivalCalf) + bSurvivalCalfYear[i] 
  } 
 
  bYearlings1 ~ dunif(0, 500) 
  bAdults1 ~ dunif(0, 4000) 
 
  bCalves[1] <- bAdults1 / 2 * bProductivity 
  bYearlings[1] <- bYearlings1 
  bAdults[1] <- bAdults1 
 
  for(i in 2:nYear){ 
    bCalves[i] <- bAdults[i-1] / 2 * bSurvivalAdult * bProductivity 
    bYearlings[i] <- bCalves[i-1] * eSurvivalCalfYear[i-1] 
    bAdults[i] <- (bYearlings[i-1] + bAdults[i-1]) * bSurvivalAdult 
  } 
 
  eCorrection <- 308/365 
  for(i in 1:length(YearBison)) { 
    eCalves[i] <- bCalves[YearBison[i]] * eSurvivalCalfYear[YearBison[i]]^eCorrection 
    eYearlings[i] <- bYearlings[YearBison[i]] * bSurvivalAdult^eCorrection 
    eAdults[i] <- bAdults[YearBison[i]] * bSurvivalAdult^eCorrection 
 
    eBison[i] <- eCalves[i] + eYearlings[i] + eAdults[i] 
    Bison[i] ~ dnorm(eBison[i], 250^-2) 
  } 
 
  sDispersionCalves ~ dunif(0, 2) 
  for(i in 1:length(Year)) { 
    eCorComp[i] <- ((Dayte[i] - 135) / 365) 
    eCalvesComp[i] <- bCalves[Year[i]] * eSurvivalCalfYear[Year[i]]^eCorComp[i] 
    eYearlingsComp[i] <- bYearlings[Year[i]] * bSurvivalAdult^eCorComp[i] 
    eAdultsComp[i] <- bAdults[Year[i]] * bSurvivalAdult^eCorComp[i] 
 
    eCowsComp[i] <- eAdultsComp[i] / 2 
 
    eDispersionCalves[i] ~ dnorm(0, sDispersionCalves^-2) 
    logit(eProportionCalves[i]) <- logit(eCalvesComp[i] / eCowsComp[i]) + eDispersionCalve
s[i] 
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    eProportionCowsYearlings[i] <- eCowsComp[i] / (eYearlingsComp[i] + eCowsComp[i]) 
 
    Calves[i] ~ dbin(eProportionCalves[i], Cows[i]) 
    Cows[i] ~ dbin(eProportionCowsYearlings[i], YearlingsCows[i]) 
  } 
} 

Environmental 
Variable/Parameter Description 

bSurvivalCalfEnv Effect of the environmental variable on bSurvivalCalf 

Environmental - Model1 

model{ 
 
  bProductivity ~ dunif(0, 1) 
  bSurvivalAdult ~ dunif(0, 1) 
  bSurvivalCalf ~ dunif(0, 1) 
 
  bSurvivalCalfEnv ~ dnorm(0, 2^-2) 
  sSurvivalCalfYear ~ dunif(0, 2) 
  for(i in 1:nYear){ 
    bSurvivalCalfYear[i] ~ dnorm(0, sSurvivalCalfYear^-2) 
    logit(eSurvivalCalfYear[i]) <- logit(bSurvivalCalf) + bSurvivalCalfEnv * Env[i] + bSurvival
CalfYear[i] 
  } 
 
  bYearlings1 ~ dunif(0, 500) 
  bAdults1 ~ dunif(0, 4000) 
 
  bCalves[1] <- bAdults1 / 2 * bProductivity 
  bYearlings[1] <- bYearlings1 
  bAdults[1] <- bAdults1 
 
  for(i in 2:nYear){ 
    bCalves[i] <- bAdults[i-1] / 2 * bSurvivalAdult * bProductivity 
    bYearlings[i] <- bCalves[i-1] * eSurvivalCalfYear[i-1] 
    bAdults[i] <- (bYearlings[i-1] + bAdults[i-1]) * bSurvivalAdult 
  } 
 
  eCorrection <- 308/365 
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  for(i in 1:length(YearBison)) { 
    eCalves[i] <- bCalves[YearBison[i]] * eSurvivalCalfYear[YearBison[i]]^eCorrection 
    eYearlings[i] <- bYearlings[YearBison[i]] * bSurvivalAdult^eCorrection 
    eAdults[i] <- bAdults[YearBison[i]] * bSurvivalAdult^eCorrection 
 
    eBison[i] <- eCalves[i] + eYearlings[i] + eAdults[i] 
    Bison[i] ~ dnorm(eBison[i], 250^-2) 
  } 
 
  sDispersionCalves ~ dunif(0, 2) 
  for(i in 1:length(Year)) { 
    eCorComp[i] <- ((Dayte[i] - 135) / 365) 
    eCalvesComp[i] <- bCalves[Year[i]] * eSurvivalCalfYear[Year[i]]^eCorComp[i] 
    eYearlingsComp[i] <- bYearlings[Year[i]] * bSurvivalAdult^eCorComp[i] 
    eAdultsComp[i] <- bAdults[Year[i]] * bSurvivalAdult^eCorComp[i] 
 
    eCowsComp[i] <- eAdultsComp[i] / 2 
 
    eDispersionCalves[i] ~ dnorm(0, sDispersionCalves^-2) 
    logit(eProportionCalves[i]) <- logit(eCalvesComp[i] / eCowsComp[i]) + eDispersionCalve
s[i] 
    eProportionCowsYearlings[i] <- eCowsComp[i] / (eYearlingsComp[i] + eCowsComp[i]) 
 
    Calves[i] ~ dbin(eProportionCalves[i], Cows[i]) 
    Cows[i] ~ dbin(eProportionCowsYearlings[i], YearlingsCows[i]) 
  } 
} 

Results 

Model Parameters 
The posterior distributions for the fixed (Kery and Schaub 2011, 75) parameters in each 
model are summarised below. 
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Population Dynamic 
Parameter Estimate Lower Upper SD Error Significance 

bAdults1 1780.00000 1273.00000 2303.00000 259.00000 29 0.001 

bProductivity 0.45970 0.40530 0.51670 0.02960 12 0.001 

bSurvivalAdult 0.88991 0.85823 0.92207 0.01622 4 0.001 

bSurvivalCalf 0.44130 0.32300 0.60060 0.07020 31 0.001 

bYearlings1 279.70000 185.10000 381.60000 48.40000 35 0.001 

sDispersionCalves 0.74820 0.60320 0.91880 0.08010 21 0.001 

sSurvivalCalfYear 0.66580 0.33460 1.23600 0.23260 68 0.001 

Convergence Iterations 

1.01 1e+05 

Environmental - Pacific Decadal Oscillation 
Parameter Estimate Lower Upper SD Error Significance 

bAdults1 1763.0000 1283.00000 2290.00000 261.00000 29 0.0010 

bProductivity 0.4550 0.40150 0.51470 0.02940 12 0.0010 

bSurvivalAdult 0.8910 0.86025 0.92222 0.01589 3 0.0010 

bSurvivalCalf 0.4459 0.33070 0.57910 0.06430 28 0.0010 

bSurvivalCalfEnv -0.3077 -0.73910 0.13260 0.22140 140 0.1378 

bYearlings1 277.6000 191.50000 379.90000 47.70000 34 0.0010 

sDispersionCalves 0.7528 0.60290 0.93010 0.08200 22 0.0010 

sSurvivalCalfYear 0.6090 0.24400 1.28700 0.25900 86 0.0010 

Convergence Iterations 

1.01 1e+05 

Environmental - Winter Severity Index 
Parameter Estimate Lower Upper SD Error Significance 

bAdults1 1768.00000 1293.00000 2306.00000 260.00000 29 0.0010 

bProductivity 0.45660 0.40040 0.51560 0.02950 13 0.0010 

bSurvivalAdult 0.88925 0.85634 0.92127 0.01612 4 0.0010 

bSurvivalCalf 0.44660 0.31550 0.59530 0.07000 31 0.0010 

bSurvivalCalfEnv 0.17980 -0.28890 0.67070 0.24050 270 0.3893 

bYearlings1 276.70000 189.90000 374.20000 48.80000 33 0.0010 

sDispersionCalves 0.74890 0.59600 0.91360 0.08140 21 0.0010 

sSurvivalCalfYear 0.69000 0.32500 1.34500 0.25000 74 0.0010 

Convergence Iterations 

1.01 1e+05 
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Environmental - Rainfall 
Parameter Estimate Lower Upper SD Error Significance 

bAdults1 1785.50000 1294.10000 2285.60000 256.10000 28 0.0010 

bProductivity 0.46020 0.40370 0.52020 0.02970 13 0.0010 

bSurvivalAdult 0.88934 0.85726 0.92169 0.01665 4 0.0010 

bSurvivalCalf 0.44340 0.30310 0.61400 0.07660 35 0.0010 

bSurvivalCalfEnv -0.00900 -0.60000 0.56900 0.29700 6700 0.9781 

bYearlings1 281.70000 189.90000 387.00000 50.00000 35 0.0010 

sDispersionCalves 0.74970 0.59400 0.92190 0.07990 22 0.0010 

sSurvivalCalfYear 0.71800 0.35500 1.37300 0.26000 71 0.0010 

Convergence Iterations 

1.01 1e+05 

Environmental - Summer Air Temperature 
Parameter Estimate Lower Upper SD Error Significance 

bAdults1 1771.20000 1301.40000 2269.50000 252.70000 27 0.0010 

bProductivity 0.45900 0.40270 0.51810 0.02970 13 0.0010 

bSurvivalAdult 0.89212 0.86129 0.92205 0.01558 3 0.0010 

bSurvivalCalf 0.42610 0.30690 0.57820 0.06710 32 0.0010 

bSurvivalCalfEnv 0.31410 -0.12770 0.75160 0.21490 140 0.1378 

bYearlings1 277.30000 197.10000 377.40000 46.40000 33 0.0010 

sDispersionCalves 0.74130 0.59450 0.91120 0.08130 21 0.0010 

sSurvivalCalfYear 0.60890 0.28370 1.12560 0.22700 69 0.0010 

Convergence Iterations 

1.01 1e+05 
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Figures 

Population Dynamic 

 
Figure 1. The predicted calf:cow ratio (black symbols ±95% credible intervals) and field 
composition data by year. 
 

 
Figure 2. The predicted yearling:cow ratio (±95% credible intervals) and field composition 
data by year. 
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Figure 3. The predicted herd size (±95% credible intervals) in March by year. 
 

 
Figure 4. The predicted calf survival (±95% credible intervals) by year. 
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Environmental 

 

Figure 5. Standardized environmental variables by year. 
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