

PRELIMINARY QUANTITATIVE RISK ASSESSMENT

TIN CAN HILL YELLOWKNIFE, NT

Prepared by: STEER ENVIRONMENTAL ASSOCIATES LTD. 302 - 247 Baker Street Nelson, BC

> Prepared for: ASSOCIATED ENVIRONMENTAL

> > SEA Project No. 1454 April 2024

EXECUTIVE SUMMARY

This report presents the findings of a Preliminary Quantitative Risk Assessment (PQRA) prepared by Steer Environmental Associates Ltd. (SEA) on behalf of Associated Environmental and the Government of the Northwest Territories for a property known as Tin Can Hill, located in Yellowknife, NT (the Site). The PQRA was conducted to determine if contamination identified in Site media poses an unacceptable risk to human health or the environment. It is understood that the results of the PQRA will be used in decision making related to the construction of a polytechnic university on the Site.

Human Health Risks

Based on the available data, arsenic in soil at the Site poses an unacceptable health risk to residents of a future university as well as regular (>3 days per week) toddler-aged (<5 years old) patrons of a university daycare. Contaminants in soil do not pose an unacceptable health risk to non-resident university students, faculty, staff, or full-time child-aged (>5 years old) university daycare patrons. These findings are based on soil data collected from the proposed university footprint.

Contaminants in soil do not pose an unacceptable health risk to members of the general public that periodically (no more than 2 days per week) use the Site for recreational purposes. This finding is based on data collected from soils across the Site, including the Old Mine Road.

The uncertainty in these findings is moderate for the COPCs identified in Site soil with a high likelihood that risks have been overestimated.

Ecological Risks

A potential risk to soil invertebrate and plant communities, insectivorous mammal and bird populations, including insectivorous listed mammal and bird species, was identified based on the available data. There is moderate to high uncertainty in this finding given that risk estimates were modelled based solely on soil chemistry, which is likely to have resulted in risks being overestimated.

Recommendations

Remediation and risk management options to mitigate risks identified for university residents and toddler-aged university daycare patrons should be considered. Characterization of soil quality within the section of the Old Mine Road that crosses the proposed university footprint is recommended to confirm human health risk estimates for people that will spend time at the university.

Additional data collection (e.g., soil invertebrate and plant tissue chemistry) is recommended to refine the risk estimates presented for soil invertebrates, plants, and wildlife.

The preliminary HHRA and ERA were limited to exposures to contaminants in Site soil. The degree to which contact with other media at the Site (e.g., seasonal surface water, plant tissues, wildlife tissues, vapours) could contribute to contaminant exposures by people, plants and animals should be investigated with findings incorporated into the PQRA.

TABLE OF CONTENTS

Page

EXE	CUTI	VE SUM	MARY	I
LIST	OF I	N-TEXT	TABLES	111
LIST	OF I	N-TEXT	FIGURES	IV
LIST	OFA	PPEND	ICES	IV
1	INTF	RODUCT	-ion	1
	1.1	Site His	story	1
	1.2	Previou	Is Environmental Site Assessments	1
		1.2.1	Advanced Phase I Environmental Site Assessment (Associated, 2023a)	2
		1.2.2	Phase II Environmental Site Assessment (Associated, 2023b)	2
	1.3	Risk As	sessment Approach	4
	1.4	Report	Organization	6
2	PRC	BLEM F	ORMULATION	7
	2.1		re Setting	
		2.1.1	Site Description	7
		2.1.2	Surrounding Lands	8
		2.1.3	Topography and Surficial Geology.	8
		2.1.4	Hydrogeology	8
		2.1.5	Local Drinking Water Supply	8
		2.1.6	Climate	8
		2.1.7	Ecology	9
	2.2	Contan	ninants of Potential Concern	9
		2.2.1	Soil	9
	2.3	Recept	ors and Exposure Pathways	. 12
		2.3.1	Human	. 12
		2.3.2	Ecological	. 13
	2.4	Study E	Endpoints	. 15
		2.4.1	Assessment Endpoints	. 15
		2.4.2	Measures of Exposure and Effect	. 15
		2.4.3	Approach to Risk Characterization	. 16
3	PRE	LIMINAF	RY HUMAN HEALTH RISK ASSESSMENT	. 17
	3.1	Exposu	ire Assessment	. 17
		3.1.1	Receptors and Exposure Characteristics	. 17
		3.1.2	Exposure Point Concentrations	. 20
		3.1.3	Bioavailability Factors	. 20
		3.1.4	Estimation of Contaminant Intakes	. 21
	3.2	Effects	Assessment	. 21
		3.2.1	COPC Carcinogenicity	. 21
		3.2.2	Toxicity Reference Values	. 22

University Student

	3.3	Risk Cł	naracterization	22	
		3.3.1	Risk Estimation	22	
		3.3.2	Uncertainty Analysis	25	
		3.3.3	Risk Description	26	
4	PRE		RY ECOLOGICAL RISK ASSESSMENT	27	
	4.1	Surroga	ate Wildlife Receptors	27	
	4.2	Exposu	re Assessment	27	
		4.2.1	Soil Invertebrates and Plants	28	
		4.2.2	Wildlife	28	
	4.3	Effects	Assessment	30	
		4.3.1	Toxicity Reference Values	30	
	4.4	Risk Cł	naracterization	32	
		4.4.1	Risk Estimation	32	
		4.4.2	Uncertainty Analysis	34	
		4.4.3	Risk Description	35	
5	CON	ICLUSIC	ONS AND RECOMMENDATIONS	37	
	5.1	Human	Health Risks	37	
	5.2	Ecologi	cal Risks	37	
	5.3	Recom	mendations	37	
6	STA	TEMENT	OF LIMITATIONS	39	
7	PRC	FESSIC	NAL STATEMENT	40	
8	REFERENCES				

LIST OF IN-TEXT TABLES

Table 1-1	Summary of On-Site Soil Contamination				
Table 1-2	Summary of Off-Site Surface Water Contamination				
Table 2-1	Basic Site Information				
Table 2-2	Screening for COPCs in Soil – Human Health				
Table 2-3	Screening for COPCs in Soil – Soil Invertebrates and Plants				
Table 2-4	Screening for COPCs in Soil – Wildlife				
Table 3-1	Assumed Exposure Characteristics – General Public (Toddler)				
Table 3-2	Assumed Exposure Characteristics – General Public (Adult)				
Table 3-3	Assumed Exposure Characteristics – University Resident (Toddler)				
Table 3-4	Assumed Exposure Characteristics – University Resident (Adult)				
Table 3-5	Assumed Exposure Characteristics – Non-Resident Univer/Faculty/Staff (Adult)				

 Table 3-6
 Assumed Exposure Point Concentrations of COPCs in Soil

- Table 3-7
 Relative Absorption Factors
- Table 3-8
 Carcinogenicity Classifications
- Table 3-9Toxicity Reference Values
- Table 3-10 Non-Carcinogenic Risk Estimates General Public (Toddler)
- Table 3-11
 Non-Carcinogenic Risk Estimates University Resident (Toddler)
- Table 3-12
 Non-Carcinogenic Risk Estimates Non-Resident University

 Student/Faculty/Staff (Adult)
- Table 3-13 Carcinogenic Risk Estimates General Public (Adult)
- Table 3-14 Carcinogenic Risk Estimates University Resident (Adult)
- Table 3-15
 Carcinogenic Risk Estimates Non-Resident University Student/Faculty/Staff (Adult)
- Table 3-16 HHRA Uncertainties
- Table 4-1
 Exposure Point Concentrations Soil Invertebrate and Plants
- Table 4-2 Exposure Characteristics Bird and Mammal Surrogate Species
- Table 4-3
 Exposure Point Concentrations in Soil Wildlife
- Table 4-4
 Exposure Point Concentrations in Plant Tissue
- Table 4-5
 Exposure Point Concentrations in Soil Invertebrate Tissuew
- Table 4-6
 Toxicity Reference Values Soil Invertebrates and Plants
- Table 4-7
 Toxicity Reference Values Mammals
- Table 4-8 Toxicity Reference Values Birds
- Table 4-9
 Hazard Quotients Soil Invertebrates and Plants
- Table 4-10 Hazard Quotients Insectivorous Mammals
- Table 4-11 Hazard Quotients Herbivorous Mammals
- Table 4-12 Hazard Quotients Insectivorous Birds
- Table 4-13Hazard Quotients Herbivorous Birds

LIST OF IN-TEXT FIGURES

- Figure A Conceptual Exposure Model Human
- Figure B Conceptual Exposure Model Ecological

LIST OF APPENDICES

- Appendix A Phase II/III ESA Figures & Aerial Photographs
- Appendix B Phase II/III ESA Tables
- Appendix C Concept Plan for Polytechnic University

- Appendix D Listed Species Search Results
- Appendix E Soil Concentration Statistics
- Appendix F Sample Calculations

1 INTRODUCTION

This report presents the findings of a Preliminary Quantitative Risk Assessment (PQRA) prepared by Steer Environmental Associates Ltd. (SEA) on behalf of Associated Environmental (Associated) and the Government of Northwest Territories (GNWT) for a property known as Tin Can Hill, located in Yellowknife, NT (the Site). The PQRA was conducted to determine if contamination identified in Site media (i.e., soil, water) poses an unacceptable risk to human health or the environment. It is understood that the results of the PQRA will be used in decision making related to the construction of a polytechnic university on the Site.

1.1 Site History

According to Associated (2023a), the Site was largely undeveloped, forested and used for recreational purposes circa 1937, the earliest records reviewed. The existing road (Old Mine Road ("OMR")) that runs along the Site's west boundary and transecting the northwest portion of the Site was constructed between 1937 and 1946 to provide access to the former Con Mine. With the exception of the OMR, the remainder of the Site is currently undeveloped greenspace with hiking trails used by the public for recreation activities. Surrounding lands were undeveloped and forested until the 1930s. The former Con Mine opened in 1938 adjacent the Site to the south and operated until 2003. The City of Yellowknife water treatment plant was constructed north of the Site in recent years.

1.2 Previous Environmental Site Assessments

The following Environmental Site Assessment (ESA) reports were prepared recently by Associated:

- Associated, 2023a. Advanced Phase I Environmental Site Assessment, Tin Can Hill, Yellowknife, NT. Prepared for the Government of Northwest Territories by Associated Environmental. Dated March 2023.
- Associated, 2023b. *Phase II Environmental Site Assessment, Tin Can Hill, Yellowknife, NT (DRAFT).* Prepared for the Government of Northwest Territories by Associated Environmental. Dated January 2024.

The key findings of these assessments are summarized in the following sections.

1.2.1 Advanced Phase I Environmental Site Assessment (Associated, 2023a)

Associated conducted an Advanced Phase I ESA to identify current or historical activities at the Site and on surrounding properties that could have resulted in the chemical contamination of Site media. The Phase I ESA considered the results of a Site inspection, a drone survey, interviews, reviews of historical records regarding past uses and activities on the Site and surrounding properties, and reviews of previous investigation and remediation reports. The Phase I ESA concluded there to be moderate potential for the following Areas of Potential Environmental Concern (APECs) to have resulted in contamination in Site media:

- Dust emissions from former off-Site mines;
- Possible mine waste material used to construct the OMR; and,
- Waste present across the Site.

Associated (2023a) recommended that a Phase II ESA be conducted to assess soil and water quality at the Site.

1.2.2 Phase II Environmental Site Assessment (Associated, 2023b)

Associated's (2023b) Phase II/III¹ ESA documents the work conducted to quantitatively assess the level of contamination at the Site, based on the APECs identified by the Advanced Phase I ESA. The Phase II/III ESA was also conducted to support the present PQRA and a remedial options evaluation for the Site. The scope of the Phase II/III ESA consisted of the following:

- Collection of soil samples at 37 locations across the Site from surface to 0.5m below ground surface (mbgs) for laboratory analysis of potential contaminants of concern (PCOCs);
- Laboratory analysis of 10 soil samples for arsenic and lead bioaccessibility;
- Collection of five soil and/or gravel samples along the OMR from surface to 0.5 mbgs for laboratory analysis of PCOCs;
- Collection of one surface water sample from both Rat Lake and Great Slave Lake for laboratory analysis of PCOCs;
- Comparison of soil and water analytical data to applicable guidelines; and,
- Documentation of ESA findings in a report.

¹ The report title indicates a Phase II ESA while the body of the report refers to a Phase II/III ESA. The report is referred to as a Phase II/III herein.

The key findings of the Phase II ESA are described in the following sections.

1.2.2.1 <u>Applicable Guidelines</u>

Associated compared soil analytical results to the residential/parkland (RL/PL) guidelines of The Environmental Guideline for Contaminated Site Remediation (EGCSR, 2003), including the 2023 draft updated guidelines. The most stringent guidelines among those available for the following exposure pathways were applied:

- Ingestion and dermal contact of soils;
- Vapour inhalation (indoor);
- Protection of potable groundwater;
- Protection of groundwater for aquatic life;
- Nutrient cycling; and
- Ecological soil contact.

Given the presence of naturally elevated arsenic concentrations in soils within the Yellowknife area, the remediation objective established for arsenic for residential land use by the EGCSR (160 mg/kg; 120 mg/kg in 2023 draft update) was applied rather than the default EGCSR guideline.

In the absence of GNWT guidelines for surface water, Associated compared surface water analytical results to the Canadian Water Quality Guidelines for the Protection of Aquatic Life (CCME, 2023).

1.2.2.2 <u>Contamination</u>

Contaminants identified in Site soil and nearby surface water in Rat Lake and Great Slave Lake, located off-Site to the west and east, respectively, are identified below in Tables 1-1 and 1-2. Figures showing sample locations and analytical results are provided in Appendix A. Analytical tables are presented in Appendix B.

Contaminants	Maximum Concentration (mg/kg)
Antimony	36
Arsenic	1,850
Barium	2,770
Boron	32.5
Cobalt	40.6
Copper	145

Table 1-1 Summary of On-Site Soil Contamination

Contaminants	Maximum Concentration (mg/kg)
Selenium	3.23
Vanadium	55.1
Zinc	768

mg/kg = milligrams per kilogram

Table 1-2 Summary of Off-Site Surface Water Contamination

Contaminants	Maximum Concentration (mg/L)
Aluminum	0.783
Arsenic	0.401
Chromium	0.00414
Copper	0.041
Fluoride	0.228
Iron	1.28
Lead	0.00784
Zinc	0.0224

Notes: mg/L = milligrams per litre

Other key findings of the Phase II/III ESA are as follows:

- Ten of 37 soil samples and four of five OMR soil samples contained arsenic at concentrations exceeding the 2023 Draft EGCSR RL background concentration (120 mg/kg). Elevated arsenic concentrations were identified primarily along the perimeter of the Site with highest concentrations detected on the southwestern portion of the Site. Elevated arsenic concentrations in Site soils were primarily comprised by arsenic (V).
- Up to 17 of 37 soil samples contained other metals (antimony, barium, boron, cobalt, copper, selenium, vanadium, zinc) at concentrations exceeding the 2023 Draft EGCSR guidelines with elevated concentrations distributed across the Site. With the exception of vanadium and arsenic, metals did not exceed guidelines in soils of the OMR.
- Total metals concentrations in surface water exceeding applicable guidelines were identified in Rat Lake (aluminum, arsenic, chromium, copper, fluoride, iron, lead and zinc) and Great Slave Lake (chromium only).
- Dissolved metals concentrations exceeding applicable guidelines were limited to arsenic in Rat Lake.
- Concentrations of other PCOCs were less than applicable guidelines in on-Site soil and off-Site surface water in the samples collected.

1.3 Risk Assessment Approach

The potential for human health or ecological risk to exist from chemicals in the environment is predicated on the co-existence of three elements: 1) chemicals must be present at hazardous

levels, 2) receptors must be present, and 3) exposure pathways must exist between the source of the chemicals and receptors. In the absence of any one of the three components, human health and/or environmental risks do not exist. The presence of all three elements indicates a potential for risk but does not indicate the magnitude of risk. A risk assessment is conducted to determine the magnitude of risk and whether the risk is acceptable or unacceptable.

The risk assessment framework applied herein is consistent with Canadian federal guidance and consists of four steps: 1) Problem Formulation; 2) Exposure Assessment, 3) Effects Assessment, and 4) Risk Characterization. In the Problem Formulation step, a conceptual exposure model is developed which describes the contaminants of potential concern, the human and ecological receptors, and potentially complete exposure pathways between the contaminants and receptors. In Exposure Assessment, the frequency, magnitude and duration of contaminant exposure is estimated for each receptor. In Effects Assessment, the adverse effects that exposures to the contaminants could cause in the receptors are identified, and toxicity reference values are selected. During the Risk Characterization phase, the results of the Exposure and Effects Assessments are integrated and interpreted into descriptions of human health and ecological risk.

The primary guidance documents used to conduct the PQRA were:

- Federal Contaminated Site Risk Assessment in Canada: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA). Version 3.0. (Health Canada, 2021a).
- Federal Contaminated Site Risk Assessment in Canada: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific Factors. Version 3.0. (Health Canada, 2021b).
- Ecological Risk Assessment Guidance Document (CCME, 2020).
- FCSAP Ecological Risk Assessment Guidance (Government of Canada, 2012).

The PQRA focusses on the risks posed by the contaminants identified in Site soil only. Risks associated with the contaminants identified in Rat Lake and Great Slave Lake surface water were not assessed because these water bodies are located off-Site and, according to Associated (2023b), the surface water contamination identified is unlikely to be related to Site activities. Consequently, Site soil quality is more relevant to decision making related to the construction of a polytechnic university on the Site.

When data permitted, analysis that would be more accurately characterized as Detailed Quantitative Risk Assessment was incorporated into the PQRA. For example, the available arsenic bioaccessibility data for Site soils was incorporated into the human health risk assessment. Similarly, professional judgement was used in assumptions regarding human exposure times, frequencies, and durations that in some cases deviated from default Health Canada (2021) PQRA guidance.

The findings of the Phase I ESA and Phase II/III ESA prepared by Associated was the primary basis for the PQRA.

1.4 Report Organization

The remainder of this PQRA report consists of the following sections:

- Problem Formulation (Section 2)
- Preliminary Human Health Risk Assessment (Section 3)
- Preliminary Ecological Risk Assessment (Section 4)
- Conclusions and Recommendations (Section 5)
- Statement of Limitations (Section 6)
- Professional Statement (Section 7)
- References (Section 8)

2 PROBLEM FORMULATION

Problem formulation is the scoping phase of the PQRA where the conceptual exposure model is developed. The problem formulation consists of the following components:

- Exposure Setting (Section 2.1)
- Contaminants of Potential Concern (Section 2.2)
- Receptors and Exposure Pathways (Section 2.3)
- Study Endpoints (Section 2.4)

2.1 Exposure Setting

This section describes Site characteristics that influence how human and ecological receptors may contact the contamination identified in Site soil. The Advanced Phase I ESA and Phase II ESA reports completed by Associated were relied upon for information presented in this section.

2.1.1 Site Description

Basic Site information is presented in Table 2-1.

Table 2-1 Basic Site Information

Civic Address	Tin Can Hill, Yellowknife, NT
Legal Land Description	Lot 10, Block 203, Plan 4460
Site Area	325,079 m ^{2*}
Owner	City of Yellowknife

Notes:

This area was presented in the Advanced Phase I ESA report and comprises a different Site footprint than that presented in the Phase II/III ESA report. The PQRA was conducted based on the Site boundaries presented in the Phase II/III ESA report.

The Site is predominantly undeveloped, vegetated and used by the public for recreational purposes including walking and cross-country skiing. Cleared dirt trails and a constructed boardwalk trail are present over boggy/marshy areas on the southwest portion of the Site. A dirt roadway (the OMR) crosses the northwestern portion of the Site and runs along the Site's western perimeter. Aerial photographs of the Site are provided in Appendix A.

The concept plan for the polytechnic university development (see Appendix C) under consideration shows the university located in the northern portion of the Site with the following elements:

- Natural areas;
- Developed areas for residential use, academic use, light industrial use, parking and roadways;

and,

• Walking trails accessible by the public

The southern portion of the Site is to be maintained in its current state and reserved for university expansion in the future.

2.1.2 Surrounding Lands

Properties surrounding the Site are predominantly residential and commercial, with recreational areas (e.g. trails, parks) also present to the north, south, southwest, and west of the Site. The City of Yellowknife water treatment plant borders the Site to the north.

2.1.3 Topography and Surficial Geology.

The Site slopes to the south, southeast, and west. Surficial geology at the Site is characterized by rock outcrops and soils, where present, was observed to be limited in thickness. Soil was observed to consist of peat, predominantly mineral soil, and mixtures of peat and silt. The OMR was observed to consist of imported sand and gravel.

2.1.4 Hydrogeology

Based on regional topography, groundwater beneath the Site is inferred to flow in a general southeasterly direction, toward Great Slave Lake.

2.1.5 Local Drinking Water Supply

The drinking water supply for the residents of Yellowknife is sourced mainly from the Yellowknife River. Some residents may also obtain water from other lakes in the area (Kam Lake, Frame Lake, Rat Lake, Peg Lake, meg Lake, Jackfish Lake, Fox Lake, Handle Lake, Gar Lake, David Lake, as well as others) for personal use (GNWT, 2019).

2.1.6 Climate

The Site is located approximately 400km south of the Arctic circle, within the continental sub-Arctic climate. The continental sub-Arctic climate is characterized by long, cold winters and short, cool summers. Climate data recorded at the Yellowknife Airport between 2013 and 2022 indicate temperatures ranging from -30°C (daily minimum) in January to 22°C in July (daily maximum). The mean annual precipitation recorded is 288.6 mm, with 170.7 mm failing as rain and the remainder falling as snow.

2.1.7 Ecology

The Site is located within the Great Slave Lowland portion of the Taiga Shield High-Boreal (HB) ecoregion, a low-elevation nearly level bedrock plain with silty discontinuous till and lacustrine deposits between outcrops and a diverse array of forest types and wetlands. This portion of the HB ecoregion occupies the low-elevation terrain adjacent to the north arm of Great Slave Lake. Forests in the region, typically consisting of jack pine, aspen, white spruce and birch, are discontinuous and occur between or on rock outcrops where there is a sufficiently thick mineral or organic substrate (GNWT, 2008).

Marsh and boggy areas are present on the southwest portion of the Site. Surface water bodies proximate to the Site include Rat Lake and Great Slave Lake. Rat Lake is located approximately 170m to the west of and hydraulically upgradient from the Site. Great Slave Lake borders the Site to the east and is inferred to be hydraulically downgradient.

2.2 Contaminants of Potential Concern

To identify contaminants of potential concern (COPCs) to human and ecological health, the maximum concentrations of contaminants identified in soil in Table 1-1 were compared with receptor-specific screening levels, as described in the following sections.

2.2.1 Soil

2.2.1.1 <u>Human Health</u>

COPCs to human health in Site soil were identified by comparing contaminant concentration with the following screening levels relevant to human health protection:

 GNWT, 2023 Draft 2023 Environmental Guideline for Contaminated Site Remediation Tier 2 Pathway Specific Soil Criteria for Residential Land Use – Human Health (Soil Contact/Ingestion)

Various concentration statistics for the soil contaminants are compared with these screening levels in Table 2-2.

Contaminant	95% UCLM Concentration (mg/kg)	90 th Percentile Concentration (mg/kg)	Maximum Concentration (mg/kg)	Human Health Screening (mg/kg)
Antimony	10.8	16.8	36	7.5
Arsenic	313	468	1850	31
Barium	147	172	2770	10000
Boron	11.6	22.5	32.5	7500
Cobalt	9.2	13.2	40.6	25
Copper	40.3	65	145	1100
Selenium	0.74	1.3	3.23	80
Vanadium	22.4	44	55.1	200
Zinc	66.4	76	768	10000

Table 2-2 Screening for COPCs in Soil – Human Health

Notes:

mg/kg = *milligrams* per *kilogram;* 95% UCLM = 95th percent upper confidence limit of the mean **Bold**: concentration exceeds screening level

Antimony and arsenic were retained as COPCs to human health in soil since 95% UCLM, 90th percentile and maximum concentrations exceeded screening levels relevant to human health protection.

The maximum concentration of cobalt exceeded the screening level but was not retained as a COPC to human health in soil since 95% UCLM and 90th percentile concentrations were less than the screening level, indicating few screening level exceedances of relatively low magnitude.

The remaining soil contaminants were not retained as COPCs to human health since their maximum concentrations do not exceed the screening level.

2.2.1.2 <u>Soil Invertebrates and Plants</u>

COPCs to soil invertebrates and plants in soil were contaminants with concentrations exceeding the following screening levels:

 GNWT, 2023 Draft 2023 Environmental Guideline for Contaminated Site Remediation Tier 2 Pathway Specific Soil Criteria for Residential Land Use – Ecological Health (Direct Soil Contact – Protection of Soil Invertebrates and Plants)

Various concentration statistics for the soil contaminants are compared with these screening levels in Table 2-3.

Contaminant	95% UCLM	90 th Percentile	Maximum	Soil Invertebrate
	Concentration	Concentration	Concentration	/ Plant Screening
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	10.8	16.8	36	20

Table 2-3 Screening for COPCs in Soil – Soil Invertebrates and Plants

Contaminant	95% UCLM Concentration (mg/kg)	90 th Percentile Concentration (mg/kg)	Maximum Concentration (mg/kg)	Soil Invertebrate / Plant Screening (mg/kg)
Arsenic	313	468	1850	17
Barium	147	172	2770	200000
Boron	11.6	22.5	32.5	3.3
Cobalt	9.2	13.2	40.6	20
Copper	40.3	65	145	63
Selenium	0.74	1.3	3.23	1
Vanadium	22.4	44	55.1	130
Zinc	66.4	76	768	250

mg/kg = *milligrams* per *kilogram;* 95% UCLM = 95th percent upper confidence limit of the mean **Bold**: concentration exceeds screening level

Arsenic, boron, copper, and selenium were retained as COPCs to soil invertebrate and plants in soil since 90th percentile and maximum concentrations exceeded screening levels relevant to soil invertebrate and plant protection.

The maximum concentrations of antimony, cobalt and zinc exceeded the screening levels but were not retained as COPCs to soil invertebrates and plants in soil since 95% UCLM and 90th percentile concentrations were less than screening levels, indicating few screening level exceedances of relatively low magnitude.

The remaining soil contaminants were not retained as COPCs to soil invertebrates and plants since their maximum concentrations do not exceed screening levels.

2.2.1.3 <u>Wildlife</u>

COPCs to wildlife in soil were contaminants with concentrations exceeding the following screening levels:

 GNWT, 2023 Draft 2023 Environmental Guideline for Contaminated Site Remediation Tier 2 Pathway Specific Soil Criteria for Residential Land Use – Ecological Health (Soil and Food Ingestion – Protection of Wildlife (Birds and Mammals))

Various concentration statistics of the soil contaminants are compared with these screening levels in Table 2-4.

Table 2-4	Screening for COPCs in Soil – Wildlife
-----------	--

Contaminant	95% UCLM	90 th Percentile	Maximum	Wildlife
	Concentration	Concentration	Concentration	Screening
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	10.8	16.8	36	25

Contaminant	95% UCLM Concentration (mg/kg)	90 th Percentile Concentration (mg/kg)	Maximum Concentration (mg/kg)	Wildlife Screening (mg/kg)
Arsenic	313	468	1850	380
Barium	147	172	2770	390
Boron	11.6	22.5	32.5	NV
Cobalt	9.2	13.2	40.6	180
Copper	40.3	65	145	300
Selenium	0.74	1.3	3.23	4.5
Vanadium	22.4	44	55.1	18
Zinc	66.4	76	768	960

mg/kg = *milligrams* per *kilogram*; *NV* = *no value*; 95% UCLM = 95th percent upper confidence limit of the mean **Bold**: concentration exceeds screening level

Arsenic and vanadium were retained as COPCs to wildlife in soil since 90th percentile and maximum concentrations exceeded screening levels relevant to wildlife protection.

The maximum concentrations of antimony and barium exceeded the screening levels but were not retained as COPCs to wildlife since 95% UCLM and 90th percentile concentrations were less than screening levels, indicating few screening level exceedances of relatively low magnitude.

The remaining soil contaminants were not retained as COPCs to wildlife since their maximum concentrations do not exceed screening levels.

2.3 Receptors and Exposure Pathways

This section identifies the human and ecological receptors of potential concern (ROPCs) for the Site and the exposure pathways through which they could be exposed to the COPCs, under current and anticipated future uses and conditions.

2.3.1 Human

The Site is currently vacant, open to public access and used for recreational purposes (e.g., walking, cross-country skiing). The general public are ROPCs for the current scenario. Following redevelopment of the Site as a university, human ROPCs include students, faculty, residents, visitors, and workers. Construction workers are ROPCs during the construction of the university.

Under both the current and future scenarios, human ROPCs could be exposed to the COPCs in soil (antimony, arsenic) by incidental soil ingestion, dermal contact, and dust inhalation. It is unknown whether people obtain and consume vegetation or wildlife from the Site and therefore these exposure pathways were not assessed. A conceptual exposure model (CEM) summarizing the potential for interaction between the COPCs identified in Site soil by human ROPCs is

presented below in Figure A.

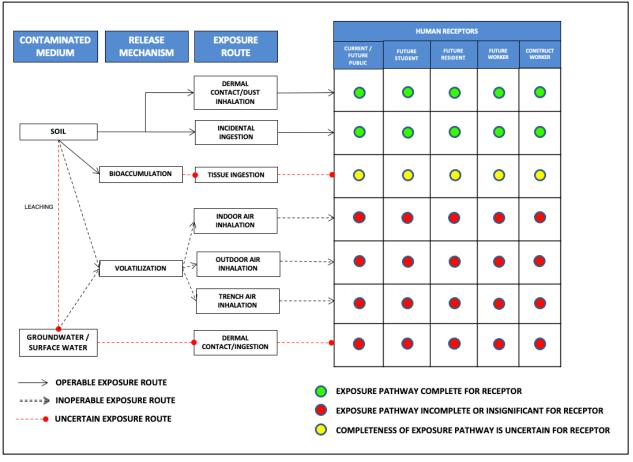


Figure A

2.3.2 Ecological

Mammals of the Taiga Shield HB Ecoregion include barren-ground caribou², woodland caribou, wood bison, moose, muskoxen, black bear, grizzly bear, lynx, timber wolf, tundra wolf, coyote, red fox, Arctic fox, marten, mink, otter, wolverine, least weasel, short-tailed weasel, striped skunk, beaver, muskrat, porcupine, red squirrel, northern flying squirrel, arctic ground squirrel, deer mouse, meadow jumping mouse, meadow vole, heather vole, taiga vole, northern red-backed vole, southern red-backed vole, northern bog lemming, showshoe hare, masked shrew, water shrew, Arctic shrew, pygmy shrew, dusky shrew, hoary bat³, little brown bat³, big brown bat, northern long-eared bat (GNWT, 2008).

Birds of the Taiga Shield HB Ecoregion include osprey, bald eagle, northern goshawk, sharp-

² Species listed as Threatened, Special Concern, Endangered or Under Consideration by Northwest Territories, COSEWIC or Species at Risk Act.

shinned hawk, red-tailed hawk, American kestrel, merlin, northern harrier, rough-legged hawk, gyrfalcon, snowy owl, boreal owl, northern hawk owl, sandhill crane, sora rail, American coot, American bittern, red-winged blackbird, loon, Harlequin duck, tundra swan, upland sandpiper, short-billed dowitcher, Wilson's phalarope, marbled godwit, willet, American avocet, semipalmated plover, killdeer, lesser yellowlegs³, spotted sandpiper, least sandpiper, common snipe, red-necked phalaropes³, new gull, California gull, herring gull, common tern, Arctic tern, Caspian tern, spruce grouse, yellow-bellied flycatcher, boreal chickadee, Swainson's thrush, magnolia warbler, Tennessee warbler, purple finch, pine grosbeak, red-winged crossbill, white-winged cross-bill, western tanager, flycatchers, vireos, horned grebe³, common nighthawk³, short-eared owl³, alder flycatcher, common yellowthroat, swamp sparrow, palm warbler, yellow-rumped warbler, yellow warbler, rusty blackbird³, chipping sparrow, northern waterthrush, willow ptarmigan, common goldeneye, common merganser, bufflehead, sharp-tailed grouse, northern flicker, olive-sided flycatcher³, hermit thrush, savannah sparrow, three-toed woodpecker, blackbeaked woodpecker, American robin, Canada jay, white-crowned sparrow, common redpoll, common raven, black-billed magpie, house sparrow, barn swallow³, bank swallow³.

Other listed species with geographical distributions that may overlap with the Site are provided in Appendix C and include eastern red bat, evening grosbeak, Harris' sparrow, yellow rail, transverse lady beetle, and yellow-banded bumble bee.

Terrestrial invertebrates and vegetation at the Site could be exposed to COPCs in soil (arsenic, boron, copper and selenium) by direct contact. Predatory invertebrates could also be exposed through the consumption of other invertebrates.

Birds and mammals could be exposed to COPCs in soil (arsenic and vanadium) through the ingestion of vegetation, prey (invertebrates, other vertebrates) and through the incidental or purposeful ingestion of soil.

A conceptual exposure model (CEM) summarizing the potential for interaction between the COPCs identified in Site soil by ecological ROPCs is presented below in Figure B.

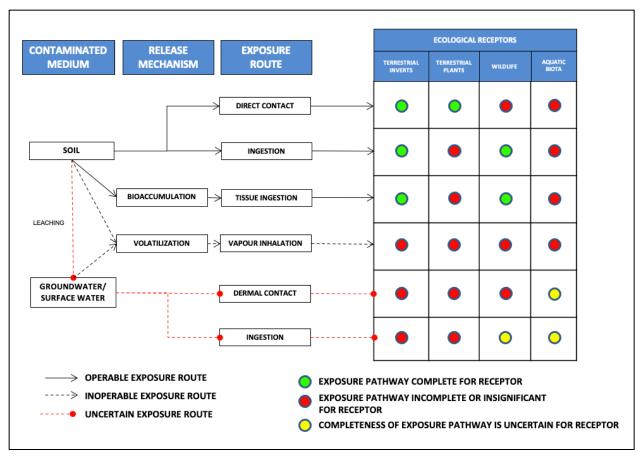


Figure B Conceptual Exposure Model – Ecological

2.4 Study Endpoints

2.4.1 Assessment Endpoints

Assessment endpoints are explicit expressions of values to be protected at a contaminated site. The assessment endpoints employed for this PQRA are as follows:

- Health of people that use the Site;
- Abundance of common wildlife populations that use the Site;
- Survival, growth and reproductive output of listed wildlife species that use the Site; and,
- Abundance and diversity of invertebrate and plant communities present on the Site.

2.4.2 Measures of Exposure and Effect

Measures were employed in the PQRA to estimate human and ecological exposures ("Measures of Exposure") and to determine the nature and potential magnitude of adverse effects ("Measures of Effect").

The measures of exposure used in the PQRA include:

- Soil chemistry
- Human and ecological receptor characteristics

The measures of effect used in the PQRA were toxicity reference values (TRVs) reported by national health agencies or in the scientific literature.

2.4.3 Approach to Risk Characterization

Human health risks were characterized based on guidance provided by Health Canada (2021a). For COPCs that are not carcinogenic, characterization of human health risks was based on the Hazard Quotient (HQ) method. HQs are ratios of estimated daily COPC doses or exposure concentrations, and TRVs that represent doses or concentrations that can occur over a lifetime without unacceptable adverse health effects occurring. Per the Draft 2023 Environmental Guideline for Contaminated Site Remediation (GNWT, 2023), an HQ greater 0.2 was considered indicative of an unacceptable risk. For carcinogenic substances, risk is based on the product of an estimated lifetime average dose or concentration and a cancer potency factor which gives the incremental lifetime cancer risk (ILCR) of exposure to a COPC. Per GNWT (2023), an ILCR exceeding 1 in 100,000 was considered indicative of an unacceptable risk assessment also characterized risks using the HQ method. Per GNWT (2023), an HQ of less than one (1) was considered indicative of a low risk.

3 PRELIMINARY HUMAN HEALTH RISK ASSESSMENT

The preliminary Human Health Risk Assessment (HHRA) evaluated the potential for antimony and arsenic in soil at the Site to negatively impact the health of people. The three main components of the preliminary HHRA are exposure assessment, effects assessment, and risk characterization.

3.1 Exposure Assessment

Exposure assessment is the process of estimating the potential magnitude, frequency, and duration of COPC exposure for a ROPC.

3.1.1 Receptors and Exposure Characteristics

The receptors evaluated for the Site were current members of the general public (all lifestages) and future residents (all lifestages) and non-resident adult students, faculty and staff of the university.

For the general public receptor and university resident receptor, the toddler lifestage was used to assess the risks of non-cancer health effects and the adult lifestage was used to assess cancer risk. The toddler lifestage was used to assess non-cancer risks for the general public and university resident because non-cancer risks are based in part on daily contaminant intakes and toddlers have the highest daily intake rate per unit body weight among the lifestages. The adult lifestage was used to assess cancer risks because cancer risks are based in part on contaminant doses averaged over a lifetime and the adult lifestage is by far the longest among the lifestages.

Exposure characteristics assumed for the receptors were taken primarily from Health Canada (2021a) and are summarized below in Tables 3-1 through 3-5.

Exposure Characteristic	Assumed Value	Source
Age	6 months to <5 years	Health Canada, 2021a
Hours per day on Site	2	Professional Judgement
Days per week on Site	1	Professional Judgement
Weeks per year on Site	26	Portion of year that Site surface is exposed*
Years on Site	4.5	Health Canada, 2021a
Life Expectancy (years)	80	Health Canada, 2021a

 Table 3-1
 Assumed Exposure Characteristics – General Public (Toddler)

Exposure Characteristic	Assumed Value	Source
Body Weight (kg)	16.5	Health Canada, 2021a
Soil Ingestion Rate (kg/day)	0.00008	Health Canada, 2021a
Inhalation Rate (m³/day)	8.3	Health Canada, 2021a
Skin Surface Area – Hands (cm ²)	430	Health Canada, 2021a
Skin Surface Area – Arms (upper and lower; cm ²)	890	Health Canada, 2021a
Soil Loading to Exposed Skin (kg/cm ² - event)	Hands (1x10- ⁷) Arms (1x10 ⁻⁸)	Health Canada, 2021a

*Snow depth at Yellowknife is at least 5cm 178 days per year on average (Current Results, 2024)

Table 3-2 Assumed Exposure Characteristics – General Public (Adult)

Exposure Characteristic	Assumed Value	Source
Age	>20 years	Health Canada, 2021a
Hours per day on Site	2	Professional Judgement
Days per week on Site	1	Professional Judgement
Weeks per year on Site	26	Portion of year that Site surface is exposed
Years on Site	60	Health Canada, 2021a
Life Expectancy (years)	80	Health Canada, 2021a
Body Weight (kg)	70.7	Health Canada, 2021a
Soil Ingestion Rate (kg/day)	0.00002	Health Canada, 2021a
Inhalation Rate (m³/day)	16.6	Health Canada, 2021a
Skin Surface Area – Hands (cm ²)	890	Health Canada, 2021a
Skin Surface Area – Arms (upper and lower; cm ²)	2500	Health Canada, 2021a
Soil Loading to Exposed Skin (kg/cm ² - event)	Hands (1x10- ⁷) Arms (1x10 ⁻⁸)	Health Canada, 2021a

Notes:

*Snow depth at Yellowknife is at least 5cm 178 days per year on average (Current Results, 2024)

Table 3-3 Assumed Exposure Characteristics – University Resident (Toddler)

Exposure Characteristic	Assumed Value	Source
Age	6 months to <5 years	Health Canada, 2021a
Hours per day on Site	24	Health Canada, 2021a
Days per week on Site	7	Health Canada, 2021a
Weeks per year on Site	26	Portion of year that Site surface is exposed*

Exposure Characteristic	Assumed Value	Source
Years on Site	4.5	Health Canada, 2021a
Life Expectancy (years)	80	Health Canada, 2021a
Body Weight (kg)	16.5	Health Canada, 2021a
Soil Ingestion Rate (kg/day)	0.00008	Health Canada, 2021a
Inhalation Rate (m ³ /day)	8.3	Health Canada, 2021a
Skin Surface Area – Hands (cm ²)	430	Health Canada, 2021a
Skin Surface Area – Arms (upper and lower; cm ²)	890	Health Canada, 2021a
Soil Loading to Exposed Skin (kg/cm ² - event)	Hands (1x10- ⁷) Arms (1x10 ⁻⁸)	Health Canada, 2021a

*Snow depth at Yellowknife is at least 5cm 178 days per year on average (Current Results, 2024)

Assumed Exposure Characteristics – University Resident (Adult) Table 3-4

Exposure Characteristic	Assumed Value	Source
Age	>20 years	Health Canada, 2021a
Hours per day on Site	24	Health Canada, 2021a
Days per week on Site	7	Health Canada, 2021a
Weeks per year on Site	26	Portion of year that Site surface is exposed*
Years on Site	60	Health Canada, 2021a
Life Expectancy (years)	80	Health Canada, 2021a
Body Weight (kg)	70.7	Health Canada, 2021a
Soil Ingestion Rate (kg/day)	0.00002	Health Canada, 2021a
Inhalation Rate (m³/day)	16.6	Health Canada, 2021a
Skin Surface Area – Hands (cm ²)	890	Health Canada, 2021a
Skin Surface Area – Arms (upper and lower; cm ²)	2500	Health Canada, 2021a
Soil Loading to Exposed Skin (kg/cm ² - event)	Hands (1x10- ⁷) Arms (1x10 ⁻⁸)	Health Canada, 2021a
Votes:		

*Snow depth at Yellowknife is at least 5cm 178 days per year on average (Current Results, 2024)

Table 3-5 Assumed Exposure Characteristics – Non-Resident University Student /Faculty/Staff (Adult)

Exposure Characteristic	Assumed Value	Source
Age	>20 years	Health Canada, 2021a

Exposure Characteristic	Assumed Value	Source
Hours per day on Site	10	Health Canada, 2021a
Days per week on Site	5	Health Canada, 2021a
Weeks per year on Site	26	Portion of year that Site surface is exposed*
Years on Site	60	Health Canada, 2021a
Life Expectancy (years)	80	Health Canada, 2021a
Body Weight (kg)	70.7	Health Canada, 2021a
Soil Ingestion Rate (kg/day)	0.00002	Health Canada, 2021a
Inhalation Rate (m³/day)	16.6	Health Canada, 2021a
Skin Surface Area – Hands (cm ²)	890	Health Canada, 2021a
Skin Surface Area – Arms (upper and lower; cm ²)	2500	Health Canada, 2021a
Soil Loading to Exposed Skin (kg/cm ² - event)	Hands (1x10- ⁷) Arms (1x10 ⁻⁸)	Health Canada, 2021a

*Snow depth at Yellowknife is at least 5cm 178 days per year on average (Current Results, 2024)

3.1.2 Exposure Point Concentrations

Exposure point concentrations (EPCs) are estimates of the reasonable maximum COPC concentrations that a receptor could be exposed to at a contaminated site. The preliminary HHRA assumed that the general public could be exposed chronically to 95% UCLM concentrations of antimony and arsenic detected in soils across the Site and that university residents and non-resident students, faculty and staff could be exposed chronically to 95% UCLM antimony and arsenic concentrations detected within the footprint of the university.

Assumed EPCs are identified in Table 3-6. Statistical summaries of the antimony and arsenic soil datasets are provided in Appendix E.

Table 3-6	Assumed Exposure Point Concentrations of COPCs in Soil
-----------	--

Contaminant	Exposure Point Concentration for General Public (mg/kg)	Exposure Point Concentration for University Resident and Non- Resident Students/Faculty/Staff (mg/kg)
Antimony	10.8	17.6
Arsenic	313	188

Notes:

mg/kg = milligrams per kilogram

3.1.3 Bioavailability Factors

Chemicals have properties that influence their capacity to cross biological barriers (e.g., skin,

respiratory/digestive tract tissue). Chemicals that enter the blood stream are available to cause adverse effects to a receptor at a target location (organ or system). Relative Absorption Factors used to estimate COPC exposures by the human ROPCs were generally obtained from Health Canada (2021a and 2021b). The Site-specific bioaccessibility of arsenic in soil was determined through laboratory testing of Site soils. The bioavailability factors assumed for the PQRA are presented in Table 3-7.

Table 3-7	Relative Absorption Factors
-----------	------------------------------------

Contaminant	RAF _{Oral}	RAF _{Dermal}	RAFInhalation
Antimony	1 ³	1 ³	1 ¹
Arsenic	0.224	0.03 ²	1 ¹

Notes:

mg/kg = *milligrams per kilogram; RAF* = *Relative Absorption Factor*

1: Health Canada, 2021a

2: Health Canada, 2021b

3: Conservative assumption in absence of value from Health Canada

4: Mean bioaccessibility value determined in laboratory testing of Site soils

3.1.4 Estimation of Contaminant Intakes

Contaminant intakes were calculated using equations provided by Health Canada (2021a). Sample calculations are provided in Appendix F.

3.2 Effects Assessment

Effects assessment involves identification of the potential toxic effects of substances, the amount of a substance that a receptor can be exposed to without adverse effects occurring, and carcinogenic potency for substances that can cause cancer.

3.2.1 COPC Carcinogenicity

Carcinogenicity classifications from Health Canada, the International Agency for Research on Cancer and the United States Environmental Protection Agency were considered in determining the degree to which antimony or arsenic have potential to cause cancer. Carcinogenicity classifications reported by these agencies for the COPCs are presented in Table 3-8.

Table 3-8	Carcinogenicity Classifications	
-----------	---------------------------------	--

COPC	Health Canada	IARC	US EPA	Assessed as Carcinogenic?
Antimony	NE	2A ¹ /3 ²	NE	No
Arsenic		1	А	Yes

Notes:

COPC = contaminant of potential concern; IARC = International Agency for Research on Cancer; NE = not evaluated; US EPA = United States Environmental Protection Agency

Health Canada Classifications: 1 = carcinogenic to humans IARC Classifications: 1 = carcinogenic to humans; 2A = probably carcinogenic to humans; 3 = not classifiable as to its carcinogenicity to humans US EPA Classifications: A = human carcinogen 1: trivalent antimony 2: pentavalent antimony

Based on this evaluation, both the carcinogenic and non-carcinogenic health risks of arsenic were assessed while only the non-carcinogenic health risks of antimony were assessed.

3.2.2 Toxicity Reference Values

The toxicity reference values (TRVs) used in the preliminary HHRA were obtained from Health Canada (2021b). In cases where applicable TRVs were not available from Health Canada, values from the US EPA Integrated Risk Information System database were used. The TRVs selected for use are presented below in Table 3-9.

Table 3-9	Toxicity Reference Values
-----------	----------------------------------

COPC	TRV	TRV Source	TRV Type	Critical Effect
Antimony	0.0004 mg/kg-day	US EPA IRIS	Oral Reference Dose	Longevity, blood glucose and cholesterol
Aroonio	0.0003 mg/kg-day	US EPA IRIS	Oral Reference Dose	Hyperpigmentation, keratosis, vascular complications
Arsenic	1.8 (mg/kg-day) ⁻¹	Health Canada, 2021b	Oral Slope Factor	Bladder, lung, liver cancer
	6.4 (mg/m ³) ⁻¹	Health Canada, 2021b	Inhalation Unit Risk	Lung cancer

Notes:

COPC = contaminant of potential concern; IRIS = Integrated Risk Information System; NR = Not Reported; RfC = Reference Concentration; TRV = Toxicity Reference Value; mg/kg-day = milligrams per kilogram per day; mg/m^3 = milligrams per cubic metre

3.3 Risk Characterization

Risk characterization involves the integration of the information from the exposure assessment, the effects assessment, and an uncertainty analysis to facilitate an overall conclusion regarding the potential for a COPC to cause adverse human health effects.

3.3.1 Risk Estimation

3.3.1.1 Non-Carcinogenic Health Risks

Non-carcinogenic health risks were estimated using the following formula:

Where:

HQ = Hazard Quotient (unitless)

CDD = Chronic Daily Dose (mg/kg-day)

RfD = Reference Dose (mg/kg-day)

An HQ greater than 0.2 was considered to be indicative of an unacceptable risk, per GNWT (2023). HQs for the receptors are presented below in Tables 3-10 to 3-12, respectively. Sample calculations are presented in Appendix F.

 Table 3-10
 Non-Carcinogenic Risk Estimates – General Public (Toddler)

COPC	HQ _{oral}	HQ _{dermal}	HQinhalation	HQ _{Total}
Antimony	0.009	0.0002	0.0000006	0.009
Arsenic	0.1	0.007	0.000002	0.1

Notes:

COPC = contaminant of potential concern; HQ = Hazard Quotient **Bold**: HQ exceeds GNWT guideline

The total HQ for a toddler-aged member of the general public is less than 0.2 for both antimony and arsenic indicating an acceptable risk.

Table 3-11	Non-Carcinogenic Risk Estimates – University Resident (Te	oddler)
------------	---	---------

СОРС	HQ _{oral}	HQ _{dermal}	HQinhalation	HQ _{Total}
Antimony	0.11	0.002	0.000008	0.13
Arsenic	0.33	0.03	0.0001	0.33

Notes:

COPC = contaminant of potential concern; HQ = Hazard Quotient **Bold**: HQ exceeds GNWT guideline

The total HQ for a toddler-aged resident of a future university marginally exceeds 0.2 for arsenic indicating an unacceptable risk. The elevated HQ is driven by exposures through the incidental ingestion of soil.

Table 3-12 Non-Carcinogenic Risk Estimates – Non-Resident University Student/Faculty/Staff (Adult)

COPC	HQ _{oral}	HQ _{dermal}	HQinhalation	HQ _{Total}
Antimony	0.004	0.0008	0.000001	0.005
Arsenic	0.01	0.01	0.00002	0.02

Notes:

COPC = contaminant of potential concern; HQ = Hazard Quotient **Bold**: HQ exceeds GNWT guideline The total HQ for a non-resident university student, faculty and staff is less than 0.2 for both antimony and arsenic indicating an acceptable risk.

3.3.1.2 <u>Carcinogenic Health Risks</u>

Carcinogenic health risks for arsenic were estimated using the following formulae:

ILCR = LAD x SF or ILCR = LAAC x UR

Where:

ILCR = Incremental Lifetime Cancer Risk (unitless)

LAD = Lifetime Average Dose (mg/kg-day)

LAAC = Lifetime Average Air Concentration (mg/m³)

SF = Oral Slope Factor (mg/kg-day)⁻¹

UR = Inhalation Unit Risk (mg/m3)⁻¹

Cancer risks for the current public adult, future university resident adult and non-resident university student, faculty and staff are presented below in Tables 3-13 to 3-15, respectively. Sample calculations are presented in Appendix F.

 Table 3-13
 Carcinogenic Risk Estimates – General Public (Adult)

COPC	ILCR _{Oral}	ILCR _{Dermal}	ILCRDust Inhalation	Total ILCR
Arsenic	3.3E-06	1.5E-06	6.8E-09	4.8E-06

Notes:

COPC = contaminant of potential concern; ILCR = Incremental Lifetime Cancer Risk **Bold**: ILCR exceeds Health Canada Guideline

The total ILCR for an adult-aged member of the general public is less than 1 in 100,000 for arsenic indicating an acceptable risk.

Table 3-14 Carcinogenic Risk Estimates – University Resident (Adult)

COPC	ILCR _{Oral}	ILCR _{Dermal}	ILCR _{Dust Inhalation}	Total ILCR
Arsenic	7.9E-06	6.1E-06	3.4E-07	1.4E-05

Notes:

COPC = contaminant of potential concern; ILCR = Incremental Lifetime Cancer Risk **Bold**: ILCR exceeds Health Canada Guideline

The total ILCR for an adult-aged resident of a future university marginally exceeds 1 in 100,000

for arsenic indicating an unacceptable risk. The elevated ILCR is driven by exposures through incidental ingestion of soil and dermal contact with soil.

Table 3-15 Carcinogenic Risk Estimates – Non-Resident University Student/Faculty/Staff (Adult)

COPC	ILCR Oral	ILCR _{Dermal}	ILCR _{Dust} Inhalation	Total ILCR
Arsenic	5.6E-06	4.4E-06	1.0E-07	1.0E-05

Notes:

COPC = contaminant of potential concern; ILCR = Incremental Lifetime Cancer Risk **Bold**: ILCR exceeds GNWT Guideline

The total ILCR for a non-resident university student, faculty and staff does not exceed 1 in 100,000 for arsenic indicating an acceptable risk.

3.3.2 Uncertainty Analysis

Some degree of uncertainty is inherent in any risk assessment process and as such risk assessments incorporate conservatism to ensure that risks are not underestimated. Table 3-16 summarizes the primary uncertainties identified in the preliminary HHRA and whether the manner in which these uncertainties were addressed contributed to an over- or underestimate of risk.

Uncertainty	Implications of	How Uncertainty Was	Effect on Risk
	Uncertainty	Addressed	Estimates
Actual exposure time, frequencies, and durations that ROPCs spend on Site and exposed to the COPC are unknown.	Contributes uncertainty to accuracy of the exposure and risk estimates.	The HHRA made conservative assumptions regarding the time spent on Site and exposed to COPCs under the current recreational scenario (2 hours per day, 1 day per week, 26 weeks per year, 60 years), future resident university scenario (24 hours per day, 7 days per week, 26 weeks per year, 60 years) and non-resident university scenario (10 hours per day, 5 days per week, 26 weeks per year, 60 years). The surface of the Site is largely comprised of bedrock outcrops with limited areas of exposed soil. The PQRA essentially assumes that exposed soils cover the entire Site.	Contributes to overestimation of risk

Table 3-16HHRA Uncertainties

Uncertainty	Implications of Uncertainty	How Uncertainty Was Addressed	Effect on Risk Estimates
Actual COPC exposure point concentrations are unknown.	Contributes uncertainty to the accuracy of the exposure and risk estimates.	ROPCs were assumed to be exposed continuously to antimony and arsenic at 95% UCLM concentrations detected in Site soil.	Contributes to overestimation of risk
The actual level of protection provided by the toxicity reference values applied in the assessment is uncertain.	Contributes uncertainty to the accuracy of the risk estimates.	The TRVs applied were obtained from recognized national health agencies. These TRVs incorporate safety factors to ensure that they are protective of human health.	Contributes to overestimation of risk

Based on the foregoing, it is expected that the risk estimates presented above for soil exposures overestimate actual human health risks for receptors at the Site.

The available chemistry data was limited to Site soils and off-Site surface water. Uncertainty remains as to the degree of contaminant exposure that people could experience through contact with other media at the Site such as:

- Ingestion of edible plants;
- Ingestion of wildlife;
- Contact with surface water; and,
- Inhalation of soil vapour.

3.3.3 Risk Description

Based on the available data, arsenic in soil at the Site poses an unacceptable health risk to residents of a future university. By inference, an unacceptable health risk is also predicted for regular (>3 days per week) toddler-aged (<5 years old) patrons of a university daycare. Antimony and arsenic in soil do not pose an unacceptable health risk to non-resident university students, faculty, staff or full-time child-aged (>5 years old) daycare patrons. These findings are based on soil data collected from the proposed university footprint.

Arsenic and antimony in soil do not pose an unacceptable health risk to members of the general public that periodically (no more than 2 days per week) use the Site for recreational purposes. This finding is based on data collected from soils across the Site, including the OMR.

4 PRELIMINARY ECOLOGICAL RISK ASSESSMENT

The Preliminary Ecological Risk Assessment (ERA) evaluated the potential for the COPCs identified in surface soil at the Site to cause adverse effects on soil invertebrate and plant communities, wildlife populations and listed species. The preliminary ERA used the deterministic Hazard Quotient method.

4.1 Surrogate Wildlife Receptors

The wildlife ROPC groups retained for the Site are:

- Herbivorous mammals;
- Insectivorous mammals;
- Herbivorous birds; and,
- Insectivorous birds.

Herbivorous and insectivorous mammals and birds were selected for assessment for the following reasons:

- They are likely to capture COPC exposures by omnivorous mammals and birds; and,
- They are likely to experience a higher level of exposure than carnivorous birds and mammals since the wildlife COPCs (arsenic and vanadium) do not biomagnify.

To simplify the preliminary ERA, the following surrogate wildlife species were used to evaluate risks for these groups:

- Herbivorous mammals: meadow vole (*Microtus pennsylvanicus*);
- Insectivorous mammals: masked (common) shrew (Sorex cinereus);
- Herbivorous Birds: spruce grouse (*Dendragapus canadensis*); and,
- Insectivorous Birds: barn swallow (*Hirundo rustica*)

These surrogate species have potential to occur at the Site (see Section 2.3.2). In addition, Environment Canada (2012) has published physical and dietary characteristics for these species which are needed to estimate COPC exposure and risk.

4.2 Exposure Assessment

In this section, COPC exposure point concentrations (EPCs) for invertebrates and plants are

identified and daily COPC doses for the surrogate wildlife species are estimated.

4.2.1 Soil Invertebrates and Plants

COPC exposures by soil invertebrates and plants were estimated based on surface soil (<1m depth) concentrations collected across the Site. Sample data from the OMR were excluded since the OMR is not expected to serve as ecological habitat. A statistical concentration summary of the COPCs identified in surface soil across the Site is presented in Appendix E. Since the goal is to ensure the protection of soil invertebrates and plants at the community level across the Site, the EPCs to which they were assumed to be exposed were 95% UCLM COPC concentrations, as presented below in Table 4-1.

 Table 4-1
 Exposure Point Concentrations - Soil Invertebrate and Plants

СОРС	EPC in Soil (mg/kg)	
Arsenic	193	
Boron	20	
Copper	41	
Selenium	1.3	

Notes:

COPC = contaminant of potential concern; EPC = Exposure Point Concentration; mg/kg = milligrams per kilogram

4.2.2 Wildlife

For birds and mammals, exposures were quantified as total daily oral COPC doses using the following model, based on that described by Suter (2007).

$$TDOD = EA / HR\left[\sum_{i=1}^{m}\sum_{k=1}^{n}P_{ik}(IR_i \times EPC_{ijk})\right]$$

Where:

TDOD_j = Total daily oral dose of COPC (j) (mg/kg-day)

EA = Exposure Area (ha)

HR = Home range (ha)

- m = Total number of ingested media (e.g., food, soil) (unitless)
- n = Number of types of medium (i) consumed (unitless)
- IR_i = Ingestion rate for medium (i) (kg/kg BW/day)
- P_{ik} = Proportion of type (k) of medium (i) consumed (unitless)
- EPC_{ijk} = Exposure point concentration of contaminant (j) in type (k) of medium (i) (mg/kg)

The receptor characteristics used as inputs to the exposure model were those published by the Government of Canada (2012) and are provided in Table 4-2.

Food			Soil	Dietary Composition (%)	
Receptor	Ingestion Rate (kg/kg-day ww)	Site Use Factor ¹ (unitless)	Ingestion Rate⁵ (%)	Invertebrates	Vegetation
Common Shrew	1.7 ⁴	1	2 ²	100 ³	0
Meadow Vole	0.33	1	2.4	0	100
Barn Swallow	1.3 ⁴	1	2 ⁶	99	1
Spruce Grouse	0.35 ⁴	1	2 ⁶	5	95

Table 4-2	Exposure Characteristics – Bird and Mammal Surrogate Species
-----------	--

Notes:

kg = kilogram; ww = wet weight

1: Exposure Area (EA)/Home Range (HR) assumed to be 1 (i.e., 100%) to be conservative

2: value for deer mouse applied in absence of value for shrew

3: 95% invertebrates and 5% 'other'. Tissue COPC concentrations of 'other' assumed to be equivalent to invertebrates.

4: converted from dry weight ingestion rate assuming 80% moisture content in dietary components

5: expressed as percentage of dry food ingestion rate

6: assumed

The other input parameters required for the wildlife exposure model are EPCs for soil and the dietary components (i.e., vegetation, invertebrates) of each wildlife receptor. Birds and mammals are mobile and therefore are likely to average their exposures to contaminated soils, vegetation, and invertebrate prey in space and time. Thus, 95% UCLM COPC concentrations in soil Site wide (excluding concentrations measured in the OMR) were assumed as EPCs for these media. EPCs in soil for wildlife are presented below in Table 4-3.

Table 4-3Exposure Point Concentrations in Soil - Wildlife

СОРС	EPCs in Soil (mg/kg)
Arsenic	193
Vanadium	19.5

Notes:

COPC = contaminant of potential concern; EPC = exposure point concentration; mg/kg = milligrams per kilogram

In the absence of measured tissue concentrations in plants at the Site, contaminant concentrations in plant tissues were estimated by multiplying the 95% UCLM concentrations of the COPCs in surface soil by soil-to-wet plant bioconcentration factors (BCFs) reported by the Risk Assessment Information System (RAIS, 2024). The modelled EPCs in plant tissues and associated uptake factors are presented in Table 4-4.

СОРС	EPC in Soil (mg/kg dw)	Soil-to-Plant Tissue BCF (mg COPC/kg ww tissue / mg COPC/kg dw soil)	EPC in Plant Tissue (mg/kg ww)
Arsenic	193	0.01	1.9
Vanadium	19.5	0.00137	0.03

 Table 4-4
 Exposure Point Concentrations in Plant Tissue

BCF = bioconcentration factor; COPC = contaminant of potential concern; dw = dry weight; EPC = exposure point concentration; mg/kg = milligrams per kilogram; ww = wet weight

In the absence of measured tissue concentrations in soil invertebrates at the Site, contaminant concentrations in soil invertebrate tissues were estimated by multiplying the 95% UCLM concentrations of the COPCs in surface soil by the soil-to-soil invertebrate BCFs reported by the US EPA (1999). The modelled EPCs in soil invertebrate tissues and associated uptake factors are presented in Table 4-5.

Table 4-5 Exposure Point Concentrations in Soil Invertebrate Tissue

СОРС	EPC in Soil (mg/kg dw)	Soil-to-Soil Invertebrate Tissue BCF (mg COPC/kg ww tissue / mg COPC/kg dw soil)	EPC in Soil Invertebrate Tissue (mg/kg ww)
Arsenic	193	0.11	21.2
Vanadium	19.5	0.22	4.3

Notes:

BCF = bioconcentration factor; COPC = contaminant of potential concern; dw = dry weight; EPC = exposure point concentration; mg/kg = milligrams per kilogram; ww = wet weight

1: BCF not provided for vanadium. Arithmetic mean BCF for other metals assumed.

A sample calculation detailing how daily COPC doses were estimated for wildlife is presented in Appendix F.

4.3 Effects Assessment

The effects assessment identified toxicity reference values (TRVs) for each COPC/ROPC combination. In the risk characterization section that follows, TRVs are compared to the exposure estimates derived in the Exposure Assessment to derive hazard quotients which represent numeric estimates of the risk to each ROPC.

4.3.1 Toxicity Reference Values

TRV used for the effects of COPCs on soil invertebrates and plants communities at the Site were the Tier 2 pathway specific soil criteria for residential land use for direct soil contact by soil invertebrates and plants (GNWT, 2023).

TRVs used for the effects of COPCs on mammals and birds were obtained from the US EPA Ecological Soil Screening Level (Eco-SSL) documents. The TRVs selected were 'no observed adverse effects levels (NOAEL) for reproduction, growth and/or survival. TRVs associated with no adverse effects were selected for use given the potential presence of listed wildlife species at the Site.

The TRVs used in the ERA for the effects of COPCs on soil invertebrates and plants, mammals and birds are presented in Tables 4-6 to 4.9.

 Table 4-6
 Toxicity Reference Values – Soil Invertebrates and Plants

COPC	TRV (mg/kg)
Arsenic	17
Boron	3.3
Copper	63
Selenium	1

Notes:

COPC = contaminant of potential concern; mg/kg = milligrams per kilogram

Table 4-7 Toxicity Reference Values – Mammals

СОРС	TRV (mg COPC/kg bw/day)	Type of Effect	Magnitude of Effect	Source		
Arsenic	1.04	reproduction, growth, survival	0	USEPA 2005a		
Vanadium	4.16	reproduction, growth, survival	0	USEPA 2005b		

Notes:

COPC = contaminant of potential concern; mg COPC/kg bw/day = milligrams of contaminant of potential concern per kilogram body weight per day; TRV = Toxicity Reference Value

Table 4-8 Toxicity Reference Values – Birds

СОРС	TRV (mg COPC/kg bw/day)	Type of Effect	Magnitude of Effect	Source		
Arsenic	2.24	reproduction, growth, survival	0	USEPA 2005a		
Vanadium	0.344	reproduction, growth, survival	0	USEPA 2005b		

Notes:

COPC = contaminant of potential concern; mg COPC/kg bw/day = milligrams of contaminant of potential concern per kilogram body weight per day; TRV = Toxicity Reference Value

4.4 Risk Characterization

Risk characterization involves the integration of the findings of the exposure and effects assessment to facilitate a determination of the likelihood of the Site COPCs causing adverse effects on ecological receptors. The three components of risk characterization are risk estimation, uncertainty analysis, and risk description.

4.4.1 Risk Estimation

Hazard Quotients (HQs) for each COPC/ROPC combination were calculated by dividing the exposure estimates by the appropriate TRV as follows:

Invertebrates and Plants

$$HQ = \frac{EPC}{TRV}$$

Birds and Mammals

$$HQ = \frac{TDOD}{TRV}$$

Where:

- HQ = Hazard Quotient (unitless)
- EPC = Exposure Point Concentration (mg/kg)
- TDOD = Total Daily Oral Dose (mg/kg-day)
- TRV = Toxicity Reference Value (mg/kg or mg/kg-day)

HQs of less than or equal to one (1) are indicative of low risk, while HQs greater than one (1) suggest that adverse effects could potentially occur at the estimated exposure level. Estimated HQs for each COPC/ROPC combination are presented below in Tables 4-9 through 4-13. Sample calculations are provided in Appendix F.

COPC	Soil EPC (mg/kg)	TRV (mg/kg)	HQ
Arsenic	193	17	11
Boron	20	3.3	6.1
Copper	41	63	0.7
Selenium	1.3	1	1.3

Notes:

COPC = contaminant of potential concern; HQ = hazard quotient; mg/kg = milligrams per kilogram; TRV = toxicity reference value

Bold: HQ exceeds risk threshold of one (1)

HQs calculated for soil invertebrates and plants were greater than the risk threshold of one (1) for arsenic, boron and selenium indicating a potential risk. The estimated HQ for copper was less than one (1).

Table 4-10 Hazard Quotients – Insectivorous Mammals

COPC	TDOD (mg/kg-day)	TRV (mg/kg-day)	HQ		
Arsenic	37.4	1.04	36		
Vanadium	7.4	4.16	1.8		

Notes:

COPC = contaminant of potential concern; HQ = hazard quotient; mg/kg-day = milligrams per kilogram body weight per day; TDOD = total daily oral dose; TRV = toxicity reference value

Bold: HQ exceeds risk threshold of one (1)

HQs calculated for insectivorous mammals were greater than the risk threshold of one (1) for arsenic and vanadium indicating a potential risk.

Table 4-11 Hazard Quotients – Herbivorous Mammals

СОРС	TDOD (mg/kg-day)	TRV (mg/kg-day)	HQ		
Arsenic	0.9	1.04	0.9		
Vanadium	0.04	4.16	0.01		

Notes:

COPC = contaminant of potential concern; HQ = hazard quotient; mg/kg-day = milligrams per kilogram body weight per day; TDOD = total daily oral dose; TRV = toxicity reference value **Bold**: HQ exceeds risk threshold of one (1)

HQs calculated for herbivorous mammals were less than the risk threshold of one (1) for arsenic and vanadium indicating a low risk.

СОРС	TDOD (mg/kg-day)	TRV (mg/kg-day)	HQ		
Arsenic	28.3	2.24	13		
Vanadium	5.6	0.344	16		

 Table 4-12
 Hazard Quotients – Insectivorous Birds

Notes:

COPC = contaminant of potential concern; HQ = hazard quotient; mg/kg-day = milligrams per kilogram body weight per day; TDOD = total daily oral dose; TRV = toxicity reference value **Bold:** HO exceeds risk threshold of one (1)

Bold: HQ exceeds risk threshold of one (1)

HQs calculated for insectivorous birds were greater than the risk threshold of one (1) for arsenic and vanadium indicating a potential risk.

Table 4-13	Hazard Quotients – Herbivorous Birds

COPC	TDOD (mg/kg-day)	TRV (mg/kg-day)	HQ		
Arsenic	1.3	2.24	0.6		
Vanadium	0.1	0.344	0.3		

Notes:

COPC = contaminant of potential concern; HQ = hazard quotient; mg/kg-day = milligrams per kilogram body weight per day; TDOD = total daily oral dose; TRV = toxicity reference value **Bold**: HQ exceeds risk threshold of one (1)

HQs calculated for herbivorous birds were less than the risk threshold of one (1) for arsenic and vanadium indicating a low risk.

4.4.2 Uncertainty Analysis

Some degree of uncertainty is inherent in any risk assessment process and as such risk assessments typically incorporate conservatism to ensure that risks are not underestimated. The following section summarizes uncertainties identified in the Preliminary ERA and whether the manner in which these uncertainties were addressed contributed to an over- or under-estimate of risk.

- Actual COPC exposures that ecological receptors may be subject to at the Site are uncertain. Receptors were assumed to be present on the Site 100% of the time and exposed chronically to 95% UCLM COPC concentrations measured in surface soil and predicted in soil invertebrate and plant tissues across the Site. These assumptions are expected to be conservative.
- In the absence of measured concentrations in plant and invertebrate tissues from the Site,

exposure concentrations in plants and soil invertebrates (as food for wildlife) were estimated using conservative uptake factors obtained from the literature. This approach is expected to be conservative and overpredict actual COPC concentrations in plant and invertebrate tissues.

- The actual bioavailability of the COPCs in Site media is uncertain. Exposure estimates for ecological ROPCs assume that COPCs at the Site have similar bioavailability to the chemical forms used in the toxicity studies upon which the TRVs are based. This is likely to be a conservative assumption given that toxicity studies typically use highly bioavailable chemical formulations.
- The actual level of protection provided by the toxicity reference values applied in the assessment is somewhat uncertain. The TRVs applied were GNWT guidelines (soil invertebrates and plants), and no observed adverse effects levels obtained from recognized government sources (wildlife). There is little uncertainty that the TRVs applied satisfy the protection goals for common and listed wildlife species.

Considering the above, it is expected that the risk estimates calculated for the ecological ROPCs overestimate actual risks, due to the multiple conservative assumptions made when estimating COPC exposures and the conservatism in the TRVs.

The available chemistry data was limited to Site soils and off-Site surface water. Uncertainty remains as to the degree of contaminant exposure that ecological receptors could experience through contact with other Site media such as surface water present seasonally on the Site.

4.4.3 Risk Description

In this section risks posed to the ecological ROPCs are described based on the risk estimates and the uncertainty analysis.

4.4.3.1 <u>Soil Invertebrates</u>

A potential risk to the soil invertebrate community at the Site was identified, based on Hazard Quotients exceeding one (1) for several COPCs. The uncertainty in this conclusion is considered moderate with a high likelihood that risks have been overestimated.

4.4.3.2 <u>Plants</u>

A potential risk to the plant community at the Site was identified, based on Hazard Quotients exceeding one (1) for several COPCs. The uncertainty in this conclusion is considered moderate

with a high likelihood that risks have been overestimated.

4.4.3.3 <u>Mammals</u>

A potential risk to insectivorous mammal populations at the Site, including listed species, was identified based on Hazard Quotients exceeding one (1) for arsenic and vanadium. The uncertainty in this conclusion is considered moderate with a high likelihood that risks have been overestimated. The risk to herbivorous mammal populations, including listed species, is considered to be low.

4.4.3.4 <u>Birds</u>

A potential risk to insectivorous bird populations at the Site, including listed species, was identified based on Hazard Quotients exceeding one (1) for arsenic and vanadium. The uncertainty in this conclusion is considered moderate with a high likelihood that risks have been overestimated. The risk to herbivorous bird populations, including listed species, is considered to be low.

5 CONCLUSIONS AND RECOMMENDATIONS

The PQRA was conducted to determine if contamination identified in Site soils poses an unacceptable risk to human health or the environment under existing and anticipated future uses and conditions.

5.1 Human Health Risks

Based on the available data, arsenic in soil at the Site poses an unacceptable health risk to residents of a future university as well as regular (>3 days per week) toddler-aged (<5 years old) patrons of a university daycare. Antimony and arsenic in soil do not pose an unacceptable health risk to non-resident university students, faculty, staff or full-time child-aged (>5 years old) university daycare patrons. These findings are based on soil data collected from the proposed university footprint shown in Appendix C.

Arsenic and antimony in soil do not pose an unacceptable health risk to members of the general public that periodically (no more than 2 days per week) use the Site for recreational purposes. This finding is based on data collected from soils across the Site, including the OMR.

The uncertainty in these findings is moderate for the COPCs identified in soil with a high likelihood that risks have been overestimated.

5.2 Ecological Risks

A potential risk to soil invertebrate and plant communities, insectivorous mammal and bird populations, including listed species of this type, was identified based on the available data. There is moderate to high uncertainty in this finding given that risk estimates were modelled based solely on soil chemistry which is likely to have resulted in risks being overestimated.

5.3 Recommendations

Remediation and risk management options to mitigate risks identified for university residents and toddler-aged university daycare patrons should be considered. Characterization of soil quality within the section of the Old Mine Road that crosses the proposed university footprint is recommended to confirm human health risk estimates for people that will spend time at the university.

Additional data collection (e.g., soil invertebrate and plant tissue chemistry) is recommended to

refine the risk estimates presented for soil invertebrates, plants, and wildlife.

The preliminary HHRA and ERA were limited to exposures to contaminants in Site soil. The degree to which contact with other media at the Site (e.g., seasonal surface water, plant tissues, wildlife tissues, vapours) could contribute to contaminant exposures by people, plants and animals should be investigated with findings incorporated into the PQRA.

6 STATEMENT OF LIMITATIONS

This report has been prepared solely for the use of Associated Environmental (Associated) and the Government of the Northwest Territories (GNWT). By using this report, Associated and GNWT agree that they will review and use the report in its entirety. Any use which other parties make of this report, or any reliance on, or decision made based on it, are the responsibility of such parties. Steer Environmental Associates Ltd. accepts no responsibility for damages, if any, suffered by other parties as a result of decisions made or actions based on this report.

The services performed as described in this report were conducted in a manner consistent with the level of care and skill normally exercised by other members of the environmental science profession currently practicing under similar conditions, subject to the time limits, and financial and physical constraints applicable to the services.

The findings of this assessment are based on information collected during previous Site investigations, our present understanding of the Site conditions, and our professional judgement in light of such information at the time the report was prepared. This report provides a professional opinion and, therefore, no warranty is expressed, implied, or made as to the conclusions, advice, and recommendations presented in this report.

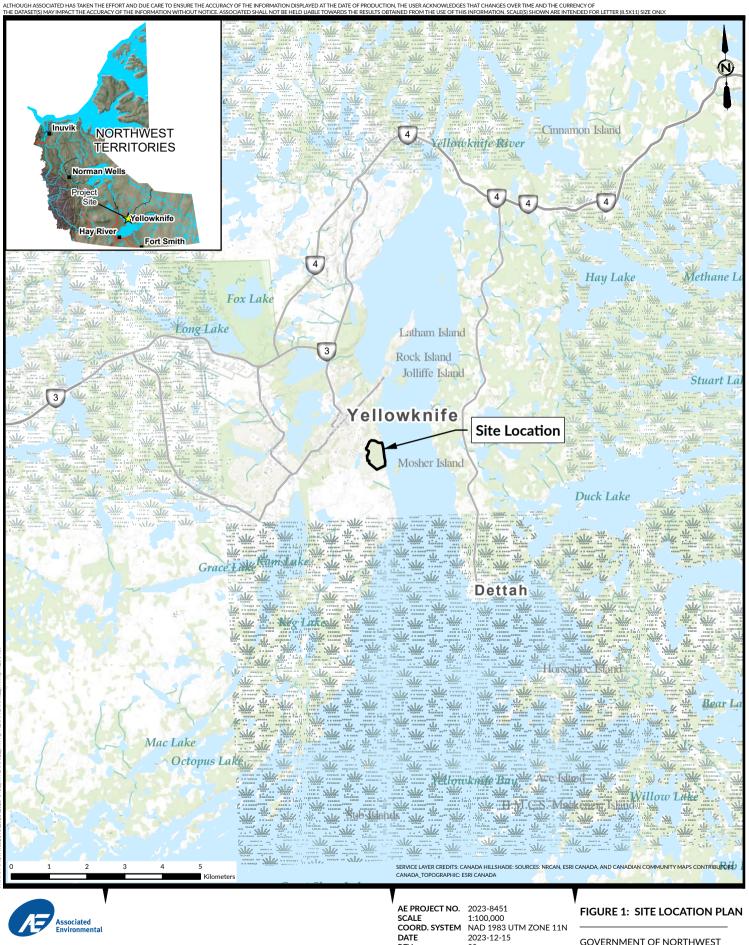
The findings and conclusions of the assessment are specific to the information and assumptions upon which they are based.

7 PROFESSIONAL STATEMENT

I declare that I am a qualified professional with the required knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.

Sincerely,

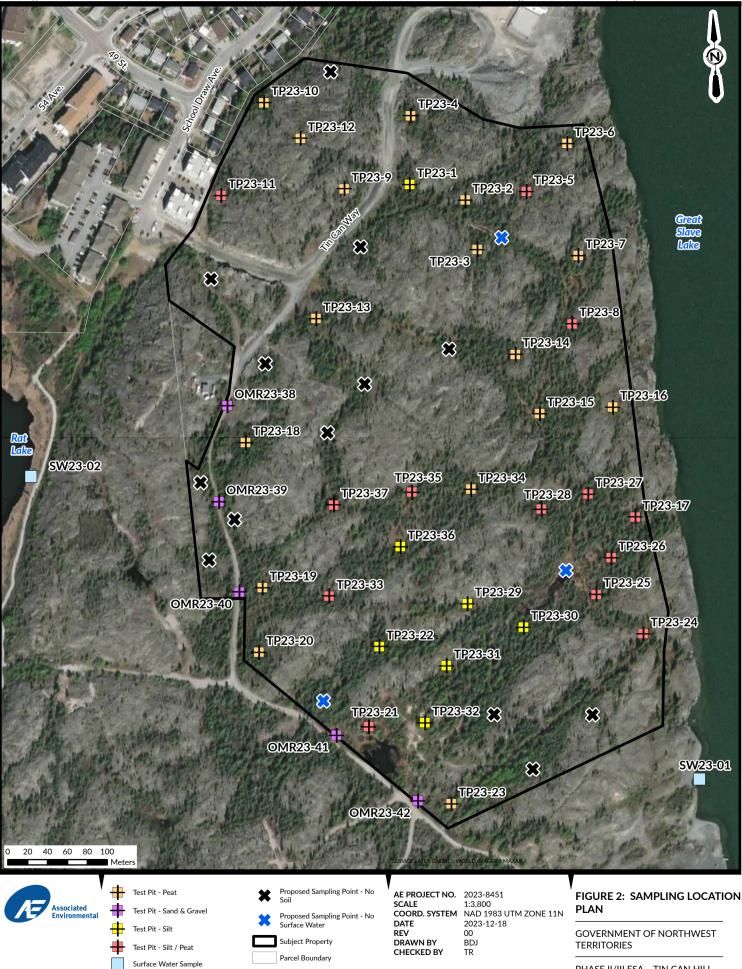
STEER ENVIRONMENTAL ASSOCIATES LTD.


Scott Steer, R.P.Bio., CSAP Environmental Toxicologist

8 **REFERENCES**

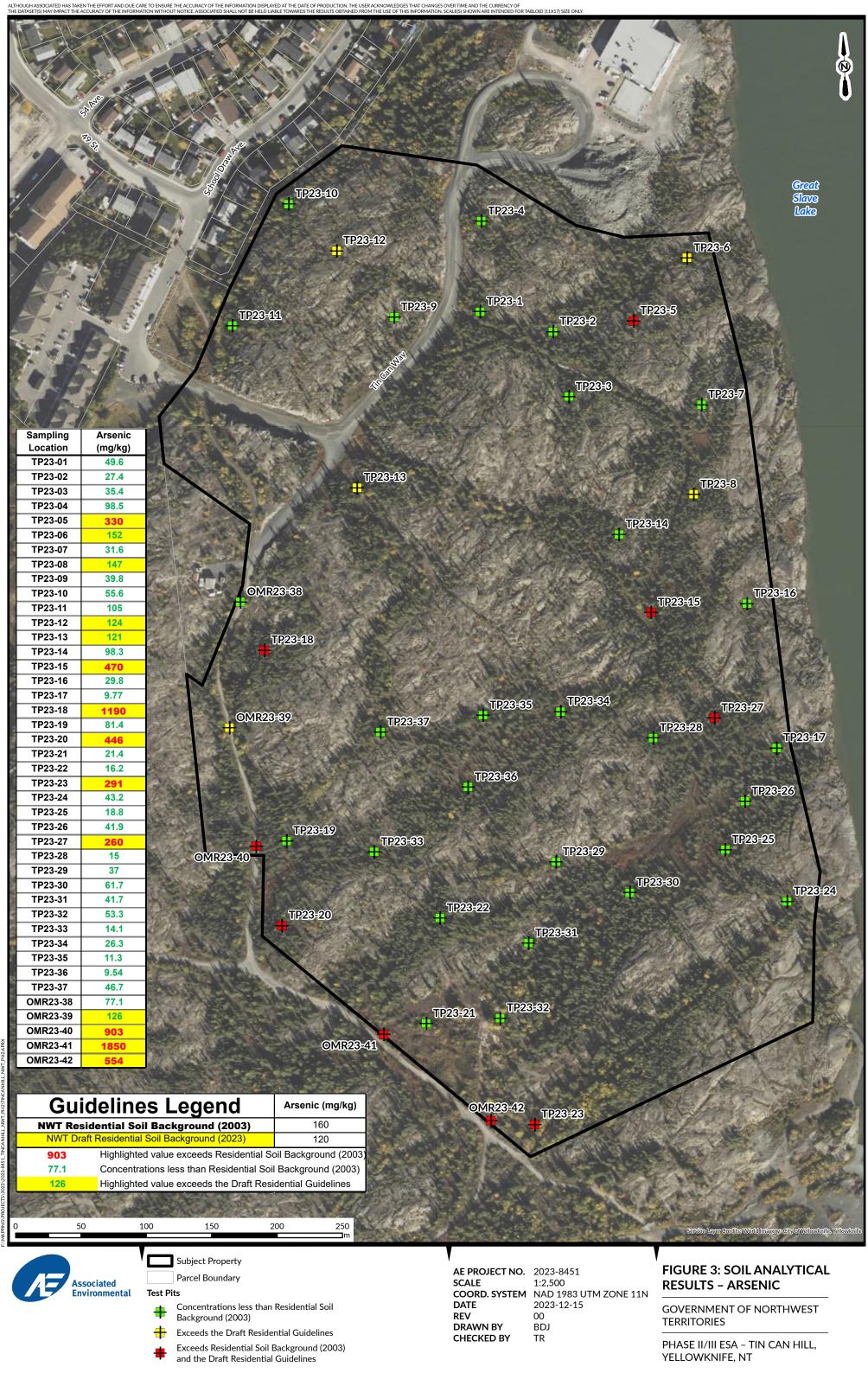
- Associated, 2023a. Advanced Phase I Environmental Site Assessment, Tin Can Hill, Yellowknife, NT. Prepared for the Government of Northwest Territories by Associated Environmental. Dated March 2023.
- Associated, 2023b. Phase II Environmental Site Assessment, Tin Can Hill, Yellowknife, NT (DRAFT). Prepared for the Government of Northwest Territories by Associated Environmental. Dated January 2024.
- Current Results, 2024. <u>https://www.currentresults.com/Weather/Canada/Northwest-</u> <u>Territories/Places/yellowknife-snowfall-totals-snow-accumulation</u> averages.php#google_vignette
- GNWT, 2008. Ecosystem Classification Group. Ecological Regions of the Northwest Territories -Taiga Shield. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada.
- Health Canada, 2021a. Federal Contaminated Site Risk Assessment in Canada: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA). Version 3.0. Health Canada. March 2021.

APPENDIX A


PHASE II/III ESA FIGURES & AERIAL PHOTOGRAPHS

REV 00 DRAWN BY BDJ CHECKED BY TR

GOVERNMENT OF NORTHWEST TERRITORIES


PHASE II/III ESA - TIN CAN HILL, YELLOWKNIFE, NT



IGES OVER TIME AND THE CURRENC

P LETTER (9.5V11) SIZE ON

PHASE II/III ESA – TIN CAN HILL, YELLOWKNIFE, NT

	40 60	80 10	n				QUE V							1	and the	and the	and a f				
Parameter	TP23-01	TP23-02	TP23-03	TP23-04	TP23-05	TP23-06	TP23-07	TP23-08	TP23-09	TP23-10	TP23-11	TP23-12	TP23-13	TP23-14	TP23-15	TP23-16	TP23-17	TP23-18	TP23-19	TP23-20	TP23-2
Antimony	1.14	6.52	3.42	17.1	9.03	27	7.45	1.34	1.89	36	2.66	27.4	7.15	9.08	4.16	2.84	3.11	16.9	12.2	15.7	1.72
Barium	93.1	22.5	32.7	51.7	102	10.6	37.3	74.6	9.83	30	68.2	54.9	53.2	292	43.8	84.5	80.7	112	31	212	169
Cobalt	13.2	1.67	1.29	6.04	23.5	1.1	1.84	12.9	0.28	4.14	12.3	5.32	2.88	40.6	6.92	1.92	1.42	4.4	4.25	13.8	11
Copper	68.8	12.4	7.71	18.8	30.8	16	14.3	17.4	3.63	32.2	15.5	18.4	7.4	35.4	22.7	15.1	21.2	20.3	28	25.9	31.6
Selenium	0.49	<0.37	<0.38	<0.38	<0.37	<0.38	0.43	<0.37	<0.37	0.42	<0.37	<0.37	<0.30	<0.30	<0.30	0.49	1.14	<0.30	<0.30	<0.30	0.27
Vanadium	41	1.78	1.66	4.05	44.3	4.25	2.45	45.6	0.77	3.45	42.7	10.7	9.9	7.89	26.3	3.81	3.44	9.84	9.73	26	55.1
Zinc	40.1	5.8	4.1	20.5	76.5	16.6	16.9	30.4	8.1	25	86.6	26.3	13.7	94.7	19.2	30.9	9.7	23.4	21.2	59.7	53.6
Parameter	TP23-22	TP23-23	TP23-24	TP23-25	TP23-26	TP23-27	TP23-28	TP23-29	TP23-30	TP23-31	TP23-32	TP23-33	TP23-34	TP23-35	TP23-36	TP23-37	OMR23-38	OMR23-39	OMR23-40	OMR23-41	OMR23-4
Antimony	0.52	12	10.8	3.83	3.93	14.8	6.91	12.4	9.19	14	10.8	1.62	1.69	4.92	3.7	12.1	0.86	1.16	3.17	3.56	6.04
Barium	192	2770	51.3	71.3	126	81.3	59.2	42.5	77.9	46.8	79.1	172	91.4	172	98	50.4	39.6	47.4	30.6	24.5	53.2
Cobalt	11	12.4	2.62	2.4	3.36	2.32	1.93	3.27	3.72	2.67	1.88	5.86	2.55	2.72	1.27	2.06	8.62	9.33	12.8	19.1	12.3
Copper	22.3	35.3	18.6	13.6	25.8	8.17	145	76.7	45.6	66.6	23.6	41.9	33.5	121	50.3	15.2	21.8	26.7	44	52	32.4
Selenium	<0.20	0.31	<0.30	0.56	0.69	<0.30	1.54	1.31	1.09	1.42	0.63	1.16	1.05	3.23	2.27	0.46	<0.20	<0.20	<0.20	<0.20	<0.20
Vanadium	50.6	42.8	5.58	1.45	1.73	4.59	4.3	4.08	3.81	3.58	3.33	29.4	12.2	7.41	1.99	4.24	32.2	34	39	51.5	39.4
Zinc	50.2	768	60.9	33	57	49.4	60.4	28.8	26.3	83.6	68	17.1	13.7	5.2	19.1	13.4	41.4	47.8	48	49.9	50.4
Æ		ciated onmenta	Test	Parce Pits Conce CS/FS	ct Proper I Bounda entration S guidelin entration	ry s less tha les						AE PROJI SCALE COORD. DATE REV DRAWN CHECKEI	SYSTEM BY	2023-8 1:3,000 NAD 19 2023-1 00 BDJ TR	983 UTM	ZONE 1	IN RES	SULTS -	OTHER	METALS	S

YELLOWKNIFE, NT

Ø

20 40 60 80 100

N

and the second sec	the set light - but	75. 34 3. 3 3. 3	The Works		2 And	all that a	A A A A	And An all of	the second second	hoge Flink No		100 A	1000	4	100 100	The second second	Aller Lines	and the second second	Carlo Caluto	A COLORADOR NO.	
Parameter	TP23-01	TP23-02	TP23-03	TP23-04	TP23-05	TP23-06	TP23-07	TP23-08		TP23-10	TP23-11	TP23-12	TP23-13	TP23-14	TP23-15	TP23-16	TP23-17	TP23-18	TP23-19	TP23-20	TP23-21
Antimony	1.14	6.52	3.42	17.1	9.03	27	7.45	1.34	1.89	36	2.66	27.4	7.15	9.08	4.16	2.84	3.11	16.9	12.2	15.7	1.72
Barium	93.1	22.5	32.7	51.7	102	10.6	37.3	74.6	9.83	30	68.2	54.9	53.2	292	43.8	84.5	80.7	112	31	212	169
Boron	<9.3	<9.3	<9.4	<9.4	<9.3	<9.4	<9.4	<9.4	<9.4	<9.4	<9.4	<9.4	<7.5	<7.4	<7.5	9.1	22.6	<7.5	<7.4	<7.4	8.4
Cobalt	13.2	1.67	1.29	6.04	23.5	1.1	1.84	12.9	0.28	4.14	12.3	5.32	2.88	40.6	6.92	1.92	1.42	4.4	4.25	13.8	11
Copper	68.8	12.4	7.71	18.8	30.8	16	14.3	17.4	3.63	32.2	15.5	18.4	7.4	35.4	22.7	15.1	21.2	20.3	28	25.9	31.6
Selenium	0.49	<0.37	<0.38	<0.38	<0.37	<0.38	0.43	<0.37	<0.37	0.42	<0.37	<0.37	<0.30	<0.30	<0.30	0.49	1.14	<0.30	<0.30	<0.30	0.27
Vanadium	41	1.78	1.66	4.05	44.3	4.25	2.45	45.6	0.77	3.45	42.7	10.7	9.9	7.89	26.3	3.81	3.44	9.84	9.73	26	55.1
Zinc	40.1	5.8	4.1	20.5	76.5	16.6	16.9	30.4	8.1	25	86.6	26.3	13.7	94.7	19.2	30.9	9.7	23.4	21.2	59.7	53.6
Parameter	TP23-22	TP23-23	TP23-24	TP23-25	TP23-26	TP23-27	TP23-28	TP23-29	TP23-30	TP23-31	TP23-32	TP23-33	TP23-34	TP23-35	TP23-36	TP23-37	OMR23-38	OMR23-39	OMR23-40	OMR23-41	OMR23-42
Antimony	0.52	12	10.8	3.83	3.93	14.8	6.91	12.4	9.19	14	10.8	1.62	1.69	4.92	3.7	12.1	0.86	1.16	3.17	3.56	6.04
Barium	192	2770	51.3	71.3	126	81.3	59.2	42.5	77.9	46.8	79.1	172	91.4	172	98	50.4	39.6	47.4	30.6	24.5	53.2
Boron	10.4	<7.4	8.5	10.2	13.6	<7.5	8.5	25.3	24.8	29.2	32.5	6.2	12.8	17.9	21.4	<7.4	<5.0	<5.0	<5.0	<5.0	<5.0
Cobalt	11	12.4	2.62	2.4	3.36	2.32	1.93	3.27	3.72	2.67	1.88	5.86	2.55	2.72	1.27	2.06	8.62	9.33	12.8	19.1	12.3
Copper	22.3	35.3	18.6	13.6	25.8	8.17	145	76.7	45.6	66.6	23.6	41.9	33.5	121	50.3	15.2	21.8	26.7	44	52	32.4
Selenium	<0.20	0.31	<0.30	0.56	0.69	<0.30	1.54	1.31	1.09	1.42	0.63	1.16	1.05	3.23	2.27	0.46	<0.20	<0.20	<0.20	<0.20	<0.20
Vanadium	50.6	42.8	5.58	1.45	1.73	4.59	4.3	4.08	3.81	3.58	3.33	29.4	12.2	7.41	1.99	4.24	32.2	34	39	51.5	39.4
Zinc	50.2	768	60.9	33	57	49.4	60.4	28.8	26.3	83.6	68	17.1	13.7	5.2	19.1	13.4	41.4	47.8	48	49.9	50.4
 Subject Property Parcel Boundary Test Pits Concentrations less than the 2023 Draft Residential Guidelines Concentrations less than the 2023 Draft Residential Guidelines Concentrations greater than the guideline Concentrations greater than the 2023 Draft Residential Guidelines 								SCA COO DAT REV DRA	DRD. SYS	1:: TEM N/ 20 00 BI) 23-12-19)))	UTM ZO	NE 11N	- OTH GOVER TERRITO PHASE	NMENT C	ALS, DRA DF NORTH	AFT GUI IWEST	ESULTS DELINES			

TIME AND THE CURRENCY

Chromium (total)	mg/L	0.001	0.0023	0.00414	24	a	the second	all all the main and the
Copper (total)	mg/L	0.002-0.004	0.00147	0.041				
Iron (total)	mg/L	0.3	0.127	1.28		Constraint A	MANINE STER	
Lead (total)	mg/L	0.001-0.007	0.00013	0.00784		California S	And a second second	STATES AND
Zinc (total)	mg/L	0.0017	<0.0030	0.0224	A MAR			Contraction of the second s
Dissolved Metals						September St.		The second second
Arsenic (dissolved)	mg/L	0.005	0.00207	0.324	Store .	19 100	THE A R R	AND
CCME AL (LT)		adian water quality gu aquatic life, Long-Terr			an an aire Charles		PRES NO	A PACINE A
0.088	Concentratio	on less than guideline	9		180 3	A A A	All the set of	A PARAMAN C.
0.0023	Concentratio	on greater than guide	line					STATISTICS.
<	Less than re	eported detection limi	t				the second second	
<0.0030	Highlighted	value has a detectior	n limit that is greate	r than standard	ALSE	COD P. SA	A AND A A	COST STATES
		11.00	Con Pl.				Conthe Martin	
50	100	150 2	00 250			all all all		Service Layer Gredits: World In
		Subject Prop	ortv					
						AE PROJECT NO.	2023-8451	FIGURE 6: SURFACE WATER
Associat		Parcel Bound				SCALE	1:3,000	ANALYTICAL RESULTS
Environr	nental W	Vater Sample Locat	ions			COORD. SYSTEM	NAD 1983 UTM ZONE 11N 2023-12-18	
		Concentratio	n less than guidel	ine		REV	00	GOVERNMENT OF NORTHWEST
		Concentratio	n greater than gu	ideline		DRAWN BY	BDJ	
			-			CHECKED BY	TR	ANALYTICAL RESULTS

_NWT_PH2.APRX

NWT_PH2\TINCANHILL

1_TINCANHILL

\2023-8451

F:\MAPPING\PROJECTS'

View of the Site from the west

View of the Site from the northeast

View of the Site from the north

View of the northern portion of the Site from the south

APPENDIX B

PHASE II/III ESA TABLES

Table 1: Summary of Soil Analytical Results - Particle Size

		Sa	mpling Location	OMR23-38-0.1	OMR23-39-0.1	OMR23-40-0.1	OMR23-41-0.1	OMR23-42-0.1	TP23-01-0.2	TP23-11-0.1	TP23-21-0.3	TP23-22-0.2
			Date Sampled	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	27-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23
			Lab Sample ID	EO2309073-038	EO2309073-039	EO2309073-040	EO2309073-041	EO2309073-042	EO2309073-001	EO2309073-011	EO2309073-021	EO2309073-022
			Soil Type	Sand & Gravel	Silt	Silt/Peat	Silt/Peat	Silt				
		S	ample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.2	0-0.1	0-0.3	0-0.2
			Sample Type	Normal								
		Guid	leline									
Analyte	Unit	NWT Tier 1	NWT Tier 1									
		RL/PL CS	RL/PL FS									
Lab Results												
Particle Size												
Fines (<0.075mm)	%	NG	NG	19.5	25.7	22.0	25.2	26.6	53.2	62.2	84.0	82.7
Sand (>0.075mm)	%	NG	NG	80.5	74.3	78.0	74.8	73.4	46.8	37.8	16.0	17.3
Texture		NG	NG	Coarse	Coarse	Coarse	Coarse	Coarse	Fine	Fine	Fine	Fine
Accompanying lab reports: ALS E022000	70	-	-	-		-	-	-	-	÷	-	

Accompanying lab reports: ALS - E02309073

NWT Tier 1 RL/PL CS

Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use and Coarse-grained Soil Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use and Fine-grained Soil

		•
-	NWT Tier 1 RL/PL FS	_Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use and Fine-grair
	NWT Tier 1 RL/PL CS	Highlighted value exceeds NWT Tier 1 RL/PL CS
	NWT Tier 1 RL/PL FS	Highlighted value exceeds NWT Tier 1 RL/PL FS
	-	Not analyzed
	<	Less than reported detection limit
	NG	No guideline
	*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
	51%	RPD value greater than the target criteria of 50% for soil

Table 2: Summary of Soil Ana	lytical Results - Meta	ls			-			-			-						
			Sampling Location	OMR23-38-0.1	OMR23-39-0.1	OMR23-40-0.1	OMR23-41-0.1	OMR23-42-0.1	TP23-01-0.2	TP23-02-0.2	TP23-03-0.1	TP23-04-0.1	TP23-04-0.1	Relative	TP23-05-0.1	TP23-06-0.1	TP23-07-0.1
			Date Sampled	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	27-Sep-23	27-Sep-23	27-Sep-23	28-Sep-23	28-Sep-23	Percent	28-Sep-23	28-Sep-23	28-Sep-23
			Lab Sample ID	EO2309073-038	EO2309073-039	EO2309073-040	EO2309073-041	EO2309073-042	EO2309073-001	EO2309073-002	EO2309073-003	EO2309073-004	EO2309073-043	Difference	EO2309073-005	EO2309073-006	EO2309073-007
			Soil Type	Sand & Gravel	Silt	Peat	Peat	Peat	Peat		Silt/Peat	Peat	Peat				
			Sample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.2	0-0.2	0-0.1	0-0.1	0-0.1		0-0.1	0-0.1	0-0.1
			Sample Type	Normal	Duplicate		Normal	Normal	Normal								
		Guid	eline														
Analyte	Unit	NWT Tier 1 RL/PL CS/FS	2023 Draft Residential Guidelines											RPD %			
Lab Results																	
General																	
pH (in 2:1 water:soil mixture)		6 - 8	6 - 8	7.46	8.05	8.04	7.89	8.29	7.24	5.38	5.66	4.37	4.60	5.1%	5.11	5.97	5.84
Metals																	
Aluminum	mg/kg	NG	NG	9810	10600	11500	16100	12100	13300	1200	755	2420	1700	35.0%	11000	1150	1280
Antimony	mg/kg	20	7.5	0.86	1.16	3.17	3.56	6.04	1.14	6.52	3.42	17.1	16.8	1.8%	9.03	27.0	7.45
Arsenic (inorganic)	mg/kg	12 ^{1.1,2.1}	17	77.1	126	903	1850	554	49.6	27.4	35.4	98.4	98.5	0.1%	330	152	31.6
Arsenic (inorganic)	mg/kg	160 1.2,2.2	120	77.1	126	903	1850	554	49.6	27.4	35.4	98.4	98.5	0.1%	330	152	31.6
Barium	mg/kg	500	390	39.6	47.4	30.6	24.5	53.2	93.1	22.5	32.7	51.7	45.2	13.4%	102	10.6	37.3
Beryllium	mg/kg	4	5	0.18	0.18	0.16	0.14	0.19	0.37	<0.19	<0.19	<0.19	<0.15	*	0.23	<0.19	<0.19
Bismuth	mg/kg	NG	NG	<0.20	<0.20	<0.20	0.27	0.22	<0.37	< 0.37	<0.38	<0.38	<0.30	*	<0.37	<0.38	<0.38
Boron	mg/kg	NG	3.3	<5.0	<5.0	<5.0	<5.0	<5.0	<9.3	<9.3	<9.4	<9.4	<7.5	*	<9.3	<9.4	<9.4
Cadmium	mg/kg	10	1.4	0.071	0.096	0.091	0.098	0.143	0.117	0.293	0.250	0.417	0.308	30.1%	1.10	0.104	0.443
Calcium	mg/kg	NG	NG	2550	5750	9430	24400	6580	13900	6800	5260	6620	5530	17.9%	7580	5760	23200
Chromium (total)	mg/kg	64	64	35.5	41.1	35.7	44.6	44.2	40.4	1.50	1.20	3.28	2.63	22.0%	32.5	3.29	1.72
Cobalt	mg/kg	50	20	8.62	9.33	12.8	19.1	12.3	13.2	1.67	1.29	6.04	4.06	39.2%	23.5	1.10	1.84
Copper	mg/kg	63	63	21.8	26.7	44.0	52.0	32.4	68.8	12.4	7.71	18.8	14.8	23.8%	30.8	16.0	14.3
Iron	mg/kg	NG	NG	17000	18400	21800	30300	20700	22100	1360	999	3140	2190	35.6%	19100	1970	1170
Lead	mg/kg	140	70	8.93	16.4	14.7	20.1	37.5	5.80	1.54	<0.94	6.11	10.1	49.2%	28.3	1.76	1.68
Lithium	mg/kg	NG	NG	18.3	20.4	19.8	29.0	24.2	23.3	<3.7	<3.8	<3.8	<3.0	*	20.4	<3.8	<3.8
Magnesium	mg/kg	NG	NG	6390	7650	9120	15400	9010	8210	964	1120	984	756	26.2%	5760	1180	1870
Manganese	mg/kg	NG	NG	195	227	299	502	256	404	74.0	71.2	143	139	2.8%	1370	72.8	330
Mercury (inorganic)	mg/kg	6.6	6.6	<0.0050	<0.0050	<0.0050	0.0086	0.0220	0.0252	0.0652	0.0390	0.0910	0.111	19.8%	0.0778	0.0550	0.0865
Molybdenum	mg/kg	10	4	0.36	0.37	0.44	0.42	0.42	0.30	0.49	0.43	0.29	0.20	36.7%	0.31	0.24	0.71
Nickel	mg/kg	50	45	23.8	30.7	32.4	42.0	33.2	33.8	3.05	2.29	8.41	6.37	27.6%	28.8	4.34	5.75
Phosphorus	mg/kg	NG	NG	448	571	495	357	411	594	373	239	646	438	38.4%	330	363	364
Potassium	mg/kg	NG	NG	1450	1870	1090	840	2260	1630	220	<190	400	290	31.9%	470	250	<190
Selenium	mg/kg	1	1	<0.20	<0.20	<0.20	<0.20	<0.20	0.49	<0.37	<0.38	<0.38	<0.30	*	< 0.37	<0.38	0.43
Silver	mg/kg	20	20	0.12	<0.10	0.22	0.16	0.23	<0.19	<0.19	<0.19	<0.19	<0.15	*	<0.19	<0.19	<0.19
Sodium	mg/kg	NG	NG	136	138	162	146	151	178	<93	<94	<94	<75	*	<93	<94	<94
Strontium	mg/kg	NG	NG	5.22	7.75	9.98	17.0	7.68	17.2	13.7	12.8	11.9	8.78	30.2%	15.2	8.41	25.0
Sulphur	mg/kg	NG	NG	<1000	<1000	<1000	1200	<1000	<1900	<1900	<1900	<1900	<1500	*	<1900	<1900	<1900
Thallium	mg/kg	1	1	0.072	0.073	0.060	<0.050	0.096	0.098	<0.093	<0.094	<0.094	<0.075	*	<0.093	<0.094	<0.094
Tin	mg/kg	50	NG	<2.0	<2.0	<2.0	<2.0	<2.0	<3.7	<3.7	<3.8	<3.8	<3.0	*	<3.7	<3.8	<3.8
Titanium	mg/kg	NG	NG	367	349	341	231	428	436	5.6	11.0	23.8	28.9	19.4%	256	8.2	7.2
Tungsten	mg/kg	NG	NG	<0.50	0.64	0.64	0.68	0.59	<0.93	<0.93	<0.94	<0.94	<0.75	*	<0.93	<0.94	<0.94
Uranium	mg/kg	NG	23	0.774	0.633	0.621	0.445	0.699	2.21	0.529	0.331	0.389	0.261	39.4%	0.474	0.122	0.514
Vanadium	mg/kg	130	18	32.2	34.0	39.0	51.5	39.4	41.0	1.78	1.66	4.05	3.37	18.3%	44.3	4.25	2.45
Zinc	mg/kg	200	250	41.4	47.8	48.0	49.9	50.4	40.1	5.8	4.1	20.5	15.4	28.4%	76.5	16.6	16.9
Zirconium	mg/kg	NG	NG	<1.0	<1.0	<1.0	<1.0	2.1	4.4	<1.9	<1.9	<1.9	<1.5	*	<1.9	<1.9	<1.9
Accompanying lab reports: AL	0 0	10		\$1.0	\$1.0	\$1.0	\$1.0	<u>~</u> . '	т.,	\$1.0	1.0	1.0	1.0		\$1.0	~1.0	1.0

 NWT Tier 1 RL/PL CS/FS
 Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil

 NWT Tier 1 RL/PL CS/FS
 Highlighted value exceeds NWT Tier 1 RL/PL CS/FS

NWI HEI I RL/PL CS/FS	Highlighted value exceeds NWT Tier 1 RL/PL CS/FS
2023 Draft Residential	Highlighted value exceeds the Draft 2023 Environmental Residential
Guidelines	Guideline for Contaminated Site Remediation
-	Not analyzed
<	Less than reported detection limit
NG	No guideline
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Table 2: Summary of Soil Analyt	ical Results - Metals																
			Sampling Location	TP23-08-0.2	TP23-08-0.2	Relative	TP23-09-0.2	TP23-10-0.1	TP23-11-0.1	TP23-12-0.1	TP23-13-0.1	TP23-14-0.1	TP23-15-0.1	TP23-16-0.1	TP23-17-0.3	TP23-18-0.1	TP23-19-0.1
			Date Sampled	28-Sep-23	28-Sep-23	Percent	28-Sep-23										
			Lab Sample ID	EO2309073-008	EO2309073-044	Difference	EO2309073-009	EO2309073-010	EO2309073-011	EO2309073-012	EO2309073-013	EO2309073-014	EO2309073-015	EO2309073-016	EO2309073-017	EO2309073-018	EO2309073-019
			Soil Type	Silt/Peat	Silt/Peat		Peat	Peat	Silt/Peat	Peat	Peat	Peat	Peat	Peat	Silt/Peat	Peat	Peat
			Sample Depth (m)	0-0.2	0-0.2		0-0.2	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.3	0-0.1	0-0.1
			Sample Type	Normal	Duplicate		Normal										
		Guid	eline														
Analyte	Unit	NWT Tier 1 RL/PL CS/FS	2023 Draft Residential Guidelines			RPD %											
Lab Results		C3/F3	Ouidennes														
General																	
pH (in 2:1 water:soil mixture)		6 - 8	6 - 8	4.89	4.58	6.5%	4.30	6.15	6.07	5.45	4.15	5.36	5.01	6.78	6.94	4.52	6.34
Metals				1107		0.070		0110	0.01	0110		0.00	0.01	0.10	0.01		
Aluminum	mg/kg	NG	NG	10400	11600	10.9%	257	1840	15500	4880	2760	3050	6790	1070	1120	3000	3100
Antimony	mg/kg	20	7.5	1.34	1.33	0.7%	1.89	36.0	2.66	27.4	7.15	9.08	4.16	2.84	3.11	16.9	12.2
Arsenic (inorganic)	mg/kg	12 ^{1.1,2.1}	1.5	1.34	1.33	9.3%	39.8	55.6	105	124	121	9.08	4.10	2.04	9.77	1190	81.4
Arsenic (inorganic)	mg/kg	12 160 ^{1.2,2.2}	120	134	147	9.3%	39.8	55.6	105	124	121	98.3	470	29.8	9.77	1190	81.4
Barium	mg/kg	500	390	71.2	74.6	9.3% 4.7%	9.83	30.0	68.2	54.9	53.2	292	470	29.0 84.5	9.77	112	31.0
Beryllium	mg/kg	4	5	<0.19	0.17	4.1%	<0.19	<0.19	0.26	0.20	<0.15	0.22	0.18	<0.15	<0.15	<0.15	<0.15
Bismuth	mg/kg	NG	NG	<0.19	<0.29	*	<0.19	<0.19	<0.20	<0.20	<0.13	<0.30	<0.30	<0.13	<0.13	<0.13	<0.13
Boron	mg/kg	NG	3.3	<9.4	<7.4	*	<9.4	<9.4	<9.4	<9.4	<7.5	<7.4	<7.5	9.1	22.6	<7.5	<7.4
Cadmium	mg/kg	10	1.4	0.234	0.293	22.4%	0.118	0.617	0.158	0.360	0.153	1.33	0.927	0.417	0.308	0.465	0.244
Calcium	mg/kg	NG	NG	7270	8660	17.5%	946	27000	6100	16600	3120	11900	11000	39200	46500	7560	19700
Chromium (total)	mg/kg	64	64	34.9	39.4	12.1%	<0.94	3.50	46.9	9.49	9.66	5.41	17.1	1.99	2.49	9.02	11.0
Cobalt	mg/kg	50	20	12.5	12.9	3.1%	0.28	4.14	12.3	5.32	2.88	40.6	6.92	1.93	1.42	4.40	4.25
Copper	mg/kg	63	63	15.9	17.4	9.0%	3.63	32.2	15.5	18.4	7.40	35.4	22.7	15.1	21.2	20.3	28.0
Iron	mg/kg	NG	NG	18100	18500	2.2%	474	2030	20700	5290	4820	4480	10900	1380	1180	5280	5390
Lead	mg/kg	140	70	9.04	6.93	26.4%	<0.94	2.030	13.2	30.1	10.9	14.5	12.6	2.11	1.06	48.0	19.2
Lithium	mg/kg	NG	NG	17.3	17.1	1.2%	<3.7	<3.7	25.5	<3.7	<3.0	<3.0	6.9	<3.0	<3.0	<3.0	4.2
Magnesium	mg/kg	NG	NG	4340	5390	21.6%	282	1520	6380	1810	1470	1350	2780	1540	1430	1880	2300
Manganese	mg/kg	NG	NG	191	211	10.0%	21.0	476	378	786	42.6	3330	376	365	332	201	172
Mercury (inorganic)	mg/kg	6.6	6.6	0.0243	0.0295	19.3%	0.0365	0.0482	0.0283	0.177	0.0897	0.128	0.0568	0.0555	0.0427	0.143	0.0872
Molybdenum	mg/kg	10	4	0.34	0.33	3.0%	<0.19	0.46	0.23	0.29	0.46	0.37	0.20	0.51	0.33	0.39	1.54
Nickel	mg/kg	50	45	23.0	22.5	2.2%	<0.94	12.0	30.0	9.91	7.27	26.6	13.0	5.45	7.76	13.0	13.5
Phosphorus	mg/kg	NG	NG	201	285	34.6%	123	518	250	835	310	705	378	407	565	490	449
Potassium	mg/kg	NG	NG	240	310	25.5%	<190	290	320	460	740	510	260	210	<150	660	410
Selenium	mg/kg	1	1	<0.37	0.31	*	<0.37	0.42	<0.37	<0.37	< 0.30	< 0.30	<0.30	0.49	1.14	< 0.30	<0.30
Silver	mg/kg	20	20	<0.19	<0.15	*	<0.19	<0.19	<0.19	<0.19	<0.15	0.25	<0.15	<0.15	<0.15	<0.15	<0.15
Sodium	mg/kg	NG	NG	141	137	2.9%	<94	<94	<94	<94	<75	91	<75	<74	<75	<75	<74
Strontium	mg/kg	NG	NG	9.29	10.3	10.3%	2.98	19.4	10.5	14.4	8.71	26.9	8.48	29.1	37.4	15.7	13.1
Sulphur	mg/kg	NG	NG	<1900	<1500	*	<1900	<1900	<1900	<1900	<1500	<1500	<1500	<1500	2800	<1500	<1500
Thallium	mg/kg	1	1	<0.094	< 0.074	*	<0.094	< 0.094	<0.094	<0.094	<0.075	0.093	<0.075	<0.074	<0.075	< 0.075	<0.074
Tin	mg/kg	50	NG	<3.7	<2.9	*	<3.7	<3.7	<3.7	<3.7	4.8	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Titanium	mg/kg	NG	NG	334	506	41.0%	5.8	22.8	383	42.8	123	54.4	220	36.2	23.9	111	75.4
Tungsten	mg/kg	NG	NG	<0.94	<0.74	*	<0.94	<0.94	<0.94	<0.94	<0.75	<0.74	<0.75	<0.74	<0.75	<0.75	<0.74
Uranium	mg/kg	NG	23	0.930	1.07	14.0%	<0.094	0.462	0.642	1.13	0.437	0.289	0.340	3.70	5.11	0.308	0.336
Vanadium	mg/kg	130	18	42.4	45.6	7.3%	0.77	3.45	42.7	10.7	9.90	7.89	26.3	3.81	3.44	9.84	9.73
Zinc	mg/kg	200	250	30.4	30.4	0.0%	8.1	25.0	86.6	26.3	13.7	94.7	19.2	30.9	9.7	23.4	21.2
Zirconium	mg/kg	NG	NG	<1.9	1.8	*	<1.9	<1.9	<1.9	<1.9	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Accompanying lab reports: ALS -		-	-	-	-		-	-	-	-	-	-	-	-	-	-	<u> </u>

 NWT Tier 1 RL/PL CS/FS
 Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil

 NWT Tier 1 RL/PL CS/FS
 Highlighted value exceeds NWT Tier 1 RL/PL CS/FS

NWI HEI I RL/PL CS/FS	Highlighted value exceeds NVV I Tier 1 RL/PL CS/FS
2023 Draft Residential	Highlighted value exceeds the Draft 2023 Environmental Residential
Guidelines	Guideline for Contaminated Site Remediation
-	Not analyzed
<	Less than reported detection limit
NG	No guideline
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Table 2: Summary of Soil Analyt	tical Results - Metals																
			Sampling Location	TP23-20-0.1	TP23-21-0.3	TP23-22-0.2	TP23-23-0.1	TP23-24-0.2	TP23-25-0.1	TP23-26-02	TP23-27-0.1	TP23-28-0.2	TP23-29-0.3	TP23-30-0.4	TP23-30-0.4	Relative	TP23-31-0.3
			Date Sampled	28-Sep-23	28-Sep-23	28-Sep-23	29-Sep-23	Percent	29-Sep-23								
			Lab Sample ID	EO2309073-020	EO2309073-021	EO2309073-022	EO2309073-023	EO2309073-024	EO2309073-025	EO2309073-026	EO2309073-027	EO2309073-028	EO2309073-029	EO2309073-030	EO2309073-045	Difference	EO2309073-031
			Soil Type	Peat	Silt/Peat	Silt	Peat	Silt/Peat	Silt/Peat	Silt/Peat	Silt/Peat	Silt/Peat	Silt	Silt	Silt		Silt
			Sample Depth (m)	0-0.1	0-0.3	0-0.2	0-0.1	0-0.2	0-0.1	0-0.2	0-0.1	0-0.2	0-0.3	0-0.4	0-0.4		0-0.3
			Sample Type	Normal	Duplicate		Normal										
		Guid	eline														
Analyte	Unit	NWT Tier 1 RL/PL CS/FS	2023 Draft Residential Guidelines													RPD %	
Lab Results																	+
General																	
pH (in 2:1 water:soil mixture)		6 - 8	6 - 8	5.68	7.25	7.81	6.04	5.99	6.44	6.69	4.85	5.71	6.25	6.45	6.34	1.7%	6.36
Metals																	
Aluminum	mg/kg	NG	NG	8100	18700	20400	9330	1090	1110	1700	933	1140	860	1440	1060	30.4%	978
Antimony	mg/kg	20	7.5	15.7	1.72	0.52	12.0	10.8	3.83	3.93	14.8	6.91	12.4	8.32	9.19	9.9%	14.0
Arsenic (inorganic)	mg/kg	12 ^{1.1,2.1}	17	446	21.4	16.2	291	43.2	18.8	41.9	260	15.0	37.0	61.7	38.0	47.5%	41.7
Arsenic (inorganic)	mg/kg	160 1.2,2.2	120	446	21.4	16.2	291	43.2	18.8	41.9	260	15.0	37.0	61.7	38.0	47.5%	41.7
Barium	mg/kg	500	390	212	169	192	2770	51.3	71.3	126	81.3	59.2	42.5	66.7	77.9	15.5%	46.8
Beryllium	mg/kg	4	5	0.23	0.64	0.78	0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	*	<0.15
Bismuth	mg/kg	NG	NG	<0.30	0.29	0.28	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	*	<0.29
Boron	mg/kg	NG	3.3	<7.4	8.4	10.4	<7.4	8.5	10.2	13.6	<7.5	8.5	25.3	19.3	24.8	24.9%	29.2
Cadmium	mg/kg	10	1.4	0.641	0.139	0.064	1.02	1.05	0.333	0.472	1.02	0.654	0.415	0.278	0.264	5.2%	0.577
Calcium	mg/kg	NG	NG	12400	8030	7250	10700	21800	43900	52000	11800	35500	28800	40400	49300	19.8%	27200
Chromium (total)	mg/kg	64	64	23.4	56.3	51.3	34.5	2.73	1.81	2.35	2.79	2.17	1.98	2.77	2.12	26.6%	2.60
Cobalt	mg/kg	50	20	13.8	11.0	11.0	12.4	2.62	2.40	3.36	2.32	1.93	3.27	3.72	3.54	5.0%	2.67
Copper	mg/kg	63	63	25.9	31.6	22.3	35.3	18.6	13.6	25.8	8.17	145	76.7	39.2	45.6	15.1%	66.6
Iron	mg/kg	NG	NG	13400	24700	27100	17000	1460	977	1120	1660	1020	1610	2370	2420	2.1%	3830
Lead	mg/kg	140	70	26.8	7.17	7.80	68.9	9.96	1.49	0.99	14.0	3.80	10.5	4.53	1.68	*	2.48
Lithium	mg/kg	NG	NG	10.7	32.0	33.6	15.5	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	*	<2.9
Magnesium	mg/kg	NG	NG	4780	9290	9650	6540	1300	1870	1770	975	844	1070	1440	1280	11.8%	1220
Manganese	mg/kg	NG	NG	1740	236	376	531	408	687	2080	335	235	40.9	215	137	44.3%	37.7
Mercury (inorganic)	mg/kg	6.6	6.6	0.139	0.0134	0.0102	0.108	0.119	0.0605	0.0601	0.154	0.0901	0.0664	0.0669	0.0546	20.2%	0.0717
Molybdenum	mg/kg	10	4	0.58	0.84	0.50	0.39	0.92	0.57	0.65	0.89	0.41	1.28	0.63	0.32	65.3%	1.64
Nickel	mg/kg	50	45	26.4	34.1	31.3	25.2	9.64	6.28	14.9	3.90	35.0	16.8	12.9	13.1	1.5%	27.0
Phosphorus	mg/kg	NG	NG	601	500	480	460	630	699	636	579	420	339	578	406	35.0%	355
Potassium	mg/kg	NG	NG	840	3090	3740	470	600	180	180	700	300	<150	<150	<150	*	<150
Selenium	mg/kg	1	1	<0.30	0.27	<0.20	0.31	< 0.30	0.56	0.69	< 0.30	1.54	1.31	0.75	1.09	37.0%	1.42
Silver	mg/kg	20	20	0.28	<0.10	<0.10	0.24	<0.15	<0.15	<0.15	0.16	<0.15	<0.15	<0.15	<0.15	*	<0.15
Sodium	mg/kg	NG	NG	<74	306	347	87	<74	<74	<74	<75	<75	<74	<74	<74	*	<74
Strontium	mg/kg	NG	NG	24.7	26.0	34.1	74.6	29.8	44.5	56.0	26.1	28.6	33.5	42.5	51.4	19.0%	31.4
Sulphur	mg/kg	NG	NG	<1500	<1000	<1000	<1500	<1500	1700	1700	<1500	<1500	7400	5100	6200	19.5%	8100
Thallium	mg/kg	1	1	0.093	0.204	0.210	<0.074	<0.074	<0.074	<0.074	<0.075	<0.075	<0.074	<0.074	<0.074	*	< 0.074
Tin	mg/kg	50	NG	4.5	<2.0	<2.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	*	<2.9
Titanium	mg/kg	NG	NG	222	810	757	374	23.6	9.2	22.2	26.6	14.8	23.5	28.3	17.6	46.6%	22.9
Tungsten	mg/kg	NG	NG	<0.74	<0.50	<0.50	<0.74	<0.74	<0.74	<0.74	<0.75	<0.75	<0.74	<0.74	<0.74	*	<0.74
Uranium	mg/kg	NG	23	0.473	3.27	1.17	0.763	0.687	0.764	0.824	1.06	4.44	5.97	2.93	3.93	29.2%	5.56
Vanadium	mg/kg	130	18	26.0	55.1	50.6	42.8	5.58	1.45	1.73	4.59	4.44	4.08	3.81	2.81	30.2%	3.58
Zinc	mg/kg	200	250	59.7	53.6	50.2	768	60.9	33.0	57.0	4.59	60.4	28.8	26.3	14.2	*	83.6
Zirconium	mg/kg	NG	NG	<1.5	20.3	18.8	<1.5	<1.5	<1.5	<1.5	49.4 <1.5	<1.5	<1.5	<1.5	<1.5	*	<1.5
		NG	υN	\$1.0	20.3	10.0	\$1.0	<1.0	S1.0	<1.0	<1.0	<1.0	<1.0	S1.0	S1.0		<1.0

 NWT Tier 1 RL/PL CS/FS
 Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil

 NWT Tier 1 RL/PL CS/FS
 Highlighted value exceeds NWT Tier 1 RL/PL CS/FS

NWI HEI I RL/PL CS/FS	Highlighted value exceeds NVV I Tier 1 RL/PL CS/FS
2023 Draft Residential	Highlighted value exceeds the Draft 2023 Environmental Residential
Guidelines	Guideline for Contaminated Site Remediation
-	Not analyzed
<	Less than reported detection limit
NG	No guideline
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Table 2: Summary of Soil Ana	alytical Results - Metals										
			Sampling Location	TP23-32-0.3	TP23-33-0.1	TP23-34-0.2	TP23-34-0.2	Relative	TP23-35-0.2	TP23-36-0.2	TP23-37-0.1
			Date Sampled	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	Percent	29-Sep-23	29-Sep-23	29-Sep-23
			Lab Sample ID	EO2309073-032	EO2309073-033	EO2309073-034	EO2309073-046	Difference	EO2309073-035	EO2309073-036	EO2309073-037
			Soil Type	Silt	Silt/Peat	Peat	Peat		Silt/Peat	Silt	Silt/Peat
			Sample Depth (m)	0-0.3	0-0.1	0-0.2	0-0.2		0-0.2	0-0.2	0-0.1
			Sample Type	Normal	Normal	Normal	Duplicate		Normal	Normal	Normal
		Guid	leline								
Analyte	Unit	NWT Tier 1 RL/PL	2023 Draft Residential								
		CS/FS	Guidelines					RPD %			
Lab Results											
General											
pH (in 2:1 water:soil mixture)		6 - 8	6 - 8	6.42	6.93	6.52	6.44	1.2%	6.85	6.74	5.19
Metals											
Aluminum	mg/kg	NG	NG	609	8650	4050	4900	19.0%	2280	1180	2240
Antimony	mg/kg	20	7.5	10.8	1.62	1.61	1.69	4.8%	4.92	3.70	12.1
Arsenic (inorganic)	mg/kg	12 ^{1.1,2.1}	17	53.3	14.1	25.5	26.3	3.1%	11.3	9.54	46.7
Arsenic (inorganic)	mg/kg	160 ^{1.2,2.2}	120	53.3	14.1	25.5	26.3	3.1%	11.3	9.54	46.7
Barium	mg/kg	500	390	79.1	172	91.3	91.4	0.1%	172	98.0	50.4
Beryllium	mg/kg	4	5	<0.15	0.41	<0.15	<0.15	*	<0.15	<0.15	<0.15
Bismuth	mg/kg	NG	NG	<0.30	<0.20	<0.29	<0.30	*	<0.30	<0.29	<0.30
Boron	mg/kg	NG	3.3	32.5	6.2	12.8	12.1	5.6%	17.9	21.4	<7.4
Cadmium	mg/kg	10	1.4	0.304	0.163	0.208	0.187	10.6%	0.436	0.441	0.300
Calcium	mg/kg	NG	NG	40200	27000	48400	49100	1.4%	64500	51300	17700
Chromium (total)	mg/kg	64	64	1.59	22.8	10.4	12.7	19.9%	3.35	2.25	3.68
Cobalt	mg/kg	50	20	1.88	5.86	2.27	2.55	11.6%	2.72	1.27	2.06
Copper	mg/kg	63	63	23.6	41.9	33.5	33.1	1.2%	121	50.3	15.2
Iron	mg/kg	NG	NG	1400	13900	5880	6910	16.1%	1480	885	2260
Lead	mg/kg	140	70	5.04	3.28	1.65	1.60	3.1%	<0.74	1.19	9.76
Lithium	mg/kg	NG	NG	<3.0	11.8	4.0	4.7	16.1%	<3.0	<2.9	<3.0
Magnesium	mg/kg	NG	NG	1220	4200	2210	2710	20.3%	970	931	902
Manganese	mg/kg	NG	NG	831	185	142	146	2.8%	559	178	81.7
Mercury (inorganic)	mg/kg	6.6	6.6	0.110	0.0373	0.0507	0.0492	3.0%	0.0589	0.0629	0.104
Molybdenum	mg/kg	10	4	0.52	0.32	0.37	0.42	12.7%	0.24	0.29	0.41
Nickel	mg/kg	50	45	10.4	20.3	11.0	12.0	8.7%	16.4	13.9	6.70
Phosphorus	mg/kg	NG	NG	618	465	662	680	2.7%	1010	690	736
Potassium	mg/kg	NG	NG	<150	840	180	200	10.5%	<150	<150	400
Selenium	mg/kg	1	1	0.63	1.16	1.01	1.05	3.9%	3.23	2.27	0.46
Silver	mg/kg	20	20	<0.15	0.19	<0.15	<0.15	*	0.20	<0.15	<0.15
Sodium	mg/kg	NG	NG	<74	116	<74	<74	*	<74	<74	<74
Strontium	mg/kg	NG	NG	44.7	32.1	42.8	43.3	1.2%	44.9	47.0	16.7
Sulphur	mg/kg	NG	NG	5200	1500	2900	2700	7.1%	1900	2600	2300
Thallium	mg/kg	1	1	<0.074	0.052	<0.074	<0.074	*	<0.074	<0.074	<0.074
Tin	mg/kg	50	NG	<3.0	<2.0	<2.9	<3.0	*	<3.0	<2.9	<3.0
Titanium	mg/kg	NG	NG	12.5	239	61.6	77.5	22.9%	19.0	11.1	21.2
Tungsten	mg/kg	NG	NG	<0.74	< 0.50	<0.74	<0.74	*	<0.74	<0.74	<0.74
Uranium	mg/kg	NG	23	1.66	5.92	8.94	9.48	5.9%	4.32	3.53	0.574
Vanadium	mg/kg	130	18	3.33	29.4	11.1	12.2	9.4%	7.41	1.99	4.24
Zinc	mg/kg	200	250	68.0	17.1	13.0	13.7	5.2%	5.2	19.1	13.4
Zirconium	mg/kg	NG	NG	<1.5	7.0	<1.5	<1.5	*	1.6	<1.5	<1.5
Zirconium	mg/ĸg	NG	NG	<1.5	1.0	<1.5	<1.5	•	1.6	<1.5	<1.5

 NWT Tier 1 RL/PL CS/FS
 Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil

 NWT Tier 1 RL/PL CS/FS
 Highlighted value exceeds NWT Tier 1 RL/PL CS/FS

NWI HEI I RL/PL CS/FS	Highlighted value exceeds NWT Tier 1 RL/PL CS/FS
2023 Draft Residential	Highlighted value exceeds the Draft 2023 Environmental Residential
Guidelines	Guideline for Contaminated Site Remediation
-	Not analyzed
<	Less than reported detection limit
NG	No guideline
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Table 3: Summary of Soil Analytical Results - Speciated Arsenic and IVBA (PBET)

	Sa	mpling Location	OMR23-39-0.1	OMR23-40-0.1	OMR23-41-0.1	OMR23-42-0.1	TP23-05-0.1	TP23-06-0.1	TP23-08-0.2	TP23-15-0.1	TP23-18-0.1	TP23-20-0.1	TP23-23-0.1	TP23-27-0.
		Date Sampled	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	29-Sep-23	29-Sep-23
		Lab Sample ID	EO2309073-039	EO2309073-040	EO2309073-041	EO2309073-042	EO2309073-005	EO2309073-006	EO2309073-008	EO2309073-015	EO2309073-018	EO2309073-020	EO2309073-023	EO2309073-
		Soil Type	Sand & Gravel	Sand & Gravel	Sand & Gravel	Sand & Gravel	Silt/Peat	Peat	Silt/Peat	Peat	Peat	Peat	Peat	Silt/Peat
	S	ample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.2	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
		Sample Type	Normal	Normal										
		Guideline												
Analyte	Unit	NWT Tier 1												
		RL/PL CS/FS												
.ab Results														
Arsenic (inorganic)	mg/kg	12 ^{1.1,2.1}	126	903	1850	554	330	152	134	470	1190	446	291	260
Arsenic (inorganic)	mg/kg	160 ^{1.1,2.1}	126	903	1850	554	330	152	134	470	1190	446	291	260
Arsenic III	µg/g	NG	-	1.65	3.37	2.47	1.55	88.8	5.96	0.911	219	5.96	6.67	-
Arsenic V	µg/g	NG	-	28.5	68.3	23.7	25.9	4.52	12	21.9	7.8	22.8	9.75	-
Arsenic, IVBA (%)	%	NG	29.1	12.9	18.2	19.2	21.7	-	-	29.8	5.6	25.3	23.9	38.5
Arsenic, IVBA (leachate)	mg/L	NG	0.37	1.20	3.44	1.10	0.68	0.20	0.60	1.45	0.67	1.12	0.72	1.00
Arsenic, IVBA (leachate) (mass/mass)	µg/g	NG	37	116	336	106	72	21	58	140	66	113	70	100
Cacodylic acid	µg/g	NG	-	<0.01	<0.01	<0.01	0.0904	0.0353	0.0401	0.0246	0.154	0.191	0.0835	-
Lead	mg/kg	140	16.4	14.7	20.1	37.5	28.3	1.76	9.04	12.6	48.0	26.8	68.9	14.0
Lead, IVBA (%)	%	NG	66.5	72.6	68.0	80.0	59.4	-	-	<1.0	72.1	52.7	78.6	<1.0
Lead, IVBA (leachate)	mg/L	NG	0.11	0.11	0.14	0.31	0.16	0.13	<0.10	<0.10	0.35	0.14	0.56	<0.10
Lead, IVBA (leachate) (mass/mass)	µg/g	NG	11	11	14	30	17	14	<10	<10	35	14	54	<10
Monomethylarsonic acid	µg/g	NG	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.0258	<0.02	0.0389	-
oH, IVBA final		NG	1.51	1.58	1.68	1.58	1.54	1.57	1.53	1.54	1.54	1.54	1.55	1.55
pH, IVBA Initial		NG	1.50	1.53	1.58	1.54	1.50	1.52	1.51	1.50	1.52	1.52	1.51	1.54
Final volume	ml	NG	100	100	100	100	100	100	100	100	100	100	100	100
Weight, extraction (dry)	g	NG	1.009	1.031	1.024	1.033	0.951	0.957	1.031	1.036	1.011	0.992	1.034	1.000

Not analyzed

-

NG

*

51%

Less than reported detection limit <

No guideline

RPDs are not calculated when parameter concentrations are within five times the method detection limit.

		Sampling Location	OMR23-38-0.1	OMR23-39-0.1	OMR23-40-0.1	OMR23-41-0.1	OMR23-42-0.1	TP23-01-0.2	TP23-02-0.2	TP23-03-0.1	TP23-04-0.1	TP23-04-0.1	Relative
		Date Sampled		29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	27-Sep-23	27-Sep-23	27-Sep-23	28-Sep-23	28-Sep-23	Percent
			E0000070 000	E0000070 000	E0000070 040	E0000070 044	E0000070 040	E0000070.004	E0000070.000	F0000070.000	E0000070.004	E0000070 040	D:#****
		Lab Sample ID	E02309073-038	BEO2309073-039	EO2309073-040	EO2309073-041	EO2309073-042	EO2309073-001	EO2309073-002	EO2309073-003	EO2309073-004	EO2309073-043	Difference
		Soil Type	Sand & Gravel	Sand & Gravel	Sand & Gravel	Sand & Gravel	Sand & Gravel	Silt	Peat	Peat	Peat	Peat	
		Sample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.2	0-0.2	0-0.1	0-0.1	0-0.1	
		Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Duplicate	
		Standard											
Analyte	Unit	Schedule IV											RPD %
Lab Results													
Metals in TCLP Leachate													
Antimony - leachate (TCLP)	mg/L	NS	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	*
Arsenic - leachate (TCLP)	mg/L	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	*
Barium - leachate (TCLP)	mg/L	NS	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	*
Beryllium - leachate (TCLP)	mg/L	NS	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	*
Boron - leachate (TCLP)	mg/L	NS	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	*
Cadmium - leachate (TCLP)	mg/L	0.5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*
Calcium - leachate (TCLP)	mg/L	NS	63	87	223	619	112	148	162	161	46	40	14.0%
Chromium - leachate (TCLP)	mg/L	5	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*
Cobalt - leachate (TCLP)	mg/L	NS	<0.050	<0.050	<0.050	0.103	0.069	<0.050	<0.050	<0.050	<0.050	<0.050	*
Copper - leachate (TCLP)	mg/L	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*
Iron - leachate (TCLP)	mg/L	NS	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	*
Lead - leachate (TCLP)	mg/L	600	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*
Magnesium - leachate (TCLP)	mg/L	NS	6.4	9.2	12.8	9.1	14.5	19.5	14.8	19.8	10.5	9.4	11.1%
Nickel - leachate (TCLP)	mg/L	NS	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*
Selenium - leachate (TCLP)	mg/L	NS	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	*
Silver - leachate (TCLP)	mg/L	5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*
Thallium - leachate (TCLP)	mg/L	NS	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	*
Uranium - leachate (TCLP)	mg/L	NS	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	*
Vanadium - leachate (TCLP)	mg/L	NS	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	*
Zinc - leachate (TCLP)	mg/L	500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	*
Zirconium - leachate (TCLP)	mg/L	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	*
Non-Volatile Extraction Details i	n TCLP Leachate												
TCLP final extract pH		NS	6.34	5.09	5.45	5.50	5.56	5.10	5.14	5.24	5.02	4.89	2.6%
TCLP initial extract pH		NS	4.94	4.94	4.90	4.90	4.90	4.90	4.90	4.90	4.90	4.94	0.8%
pH, TCLP 1st preliminary		NS	8.32	8.22	8.96	9.25	9.21	7.88	6.00	6.31	5.10	5.49	7.4%
pH, TCLP 2nd preliminary Accompanying lab reports: ALS -		NS	1.37	1.41	1.38	1.54	1.55	1.36	1.58	1.49	1.36	1.59	15.6%

Accompanying lab reports. ALC	
Schedule IV	Standards for Solid Waste/Process Residuals Suitable for Landfill
-	Not analyzed
<	Less than reported detection limit
NS	No standard
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Table 4: Summary of Soil Analyti	-	Sampling Location	OMR23-38-0.1	TP23-05-0.1	TP23-06-0.1	TP23-07-0.1	TP23-08-0.2	TP23-08-0.2	Relative	TP23-09-0.2	TP23-10-0.1	TP23-11-0.1	TP23-12-0.1
		Date Sampled	29-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	Percent	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23
			-	-									
		Lab Sample ID	EO2309073-038	EO2309073-005	EO2309073-006	EO2309073-007	EO2309073-008	EO2309073-044	Difference	EO2309073-009	EO2309073-010	EO2309073-017	EO2309073-01
		Soil Type	Sand & Gravel	Silt/Peat	Peat	Peat	Silt/Peat	Silt/Peat		Peat	Peat	Silt/Peat	Peat
		Sample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.2	0-0.2		0-0.2	0-0.1	0-0.1	0-0.1
		Sample Type	Normal	Normal	Normal	Normal	Normal	Duplicate		Normal	Normal	Normal	Normal
		Standard											
Analyte	Unit	Schedule IV							RPD %				
Lab Results													
Metals in TCLP Leachate													
Antimony - leachate (TCLP)	mg/L	NS	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	*	<0.10	<0.10	<0.10	<0.10
Arsenic - leachate (TCLP)	mg/L	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	*	<1.0	<1.0	<1.0	<1.0
Barium - leachate (TCLP)	mg/L	NS	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	*	<2.5	<2.5	<2.5	<2.5
Beryllium - leachate (TCLP)	mg/L	NS	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	*	<0.025	<0.025	<0.025	<0.025
Boron - leachate (TCLP)	mg/L	NS	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	*	<0.50	<0.50	<0.50	<0.50
Cadmium - leachate (TCLP)	mg/L	0.5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050	<0.050
Calcium - leachate (TCLP)	mg/L	NS	63	69	170	204	64	45	34.9%	42	210	54	147
Chromium - leachate (TCLP)	mg/L	5	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*	<0.25	<0.25	<0.25	<0.25
Cobalt - leachate (TCLP)	mg/L	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050	<0.050
Copper - leachate (TCLP)	mg/L	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050	<0.050
Iron - leachate (TCLP)	mg/L	NS	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	*	<5.0	<5.0	<5.0	<5.0
Lead - leachate (TCLP)	mg/L	600	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*	<0.25	<0.25	<0.25	<0.25
Magnesium - leachate (TCLP)	mg/L	NS	6.4	8.2	14.3	26.6	7.8	6.2	22.9%	5.6	20.7	3.6	13.8
Nickel - leachate (TCLP)	mg/L	NS	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*	<0.25	<0.25	<0.25	<0.25
Selenium - leachate (TCLP)	mg/L	NS	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	*	<0.10	<0.10	<0.10	<0.10
Silver - leachate (TCLP)	mg/L	5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050	<0.050
Thallium - leachate (TCLP)	mg/L	NS	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	*	<1.0	<1.0	<1.0	<1.0
Uranium - leachate (TCLP)	mg/L	NS	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	*	<0.20	<0.20	<0.20	<0.20
Vanadium - leachate (TCLP)	mg/L	NS	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	*	<0.15	<0.15	<0.15	<0.15
Zinc - leachate (TCLP)	mg/L	500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	*	<0.50	<0.50	<0.50	<0.50
Zirconium - leachate (TCLP)	mg/L	NS	<10	<10	<10	<10	<10	<10	*	<10	<10	<10	<10
Non-Volatile Extraction Details in	n TCLP Leachate												
TCLP final extract pH		NS	6.34	5.02	5.07	5.02	5.00	4.94	1.2%	5.09	5.12	5.16	5.20
TCLP initial extract pH		NS	4.94	4.90	4.90	4.90	4.90	4.94	0.8%	4.90	4.90	4.90	4.90
pH, TCLP 1st preliminary		NS	8.32	5.58	6.25	6.38	4.53	6.58	36.9%	5.03	6.42	6.53	5.97
pH, TCLP 2nd preliminary		NS	1.37	1.42	1.61	1.69	1.31	1.63	21.8%	1.45	1.63	1.24	1.57

Schedule IV	Standards for Solid Waste/Process Residuals Suitable for Landfill
-	Not analyzed
<	Less than reported detection limit
NS	No standard
	RPDs are not calculated when parameter concentrations are within
*	five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Ī

Table 4: Summary of Soil Analyt	ical Results - Toxicity Charac												
		Sampling Location		TP23-13-0.1	TP23-14-0.1	TP23-15-0.1	TP23-16-0.1	TP23-17-0.3	TP23-18-0.1	TP23-19-0.1	TP23-20-0.1	TP23-21-0.3	TP23-22-0.2
		Date Sampled	29-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23
		Lab Sample ID	EO2309073-038	EO2309073-013	EO2309073-014	EO2309073-015	5 EO2309073-016	EO2309073-017	EO2309073-018	EO2309073-019	EO2309073-020	EO2309073-021	EO2309073-02
		-											
			Sand & Gravel	Peat	Peat	Peat	Peat	Silt/Peat	Peat	Peat	Peat	Silt/Peat	Silt
		Sample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.3	0-0.1	0-0.1	0-0.1	0-0.3	0-0.2
	1	Sample Type	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal
		Standard											
Analyte	Unit	Schedule IV											
Lab Results			-										
Metals in TCLP Leachate													
Antimony - leachate (TCLP)	mg/L	NS	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Arsenic - leachate (TCLP)	mg/L	2.5	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Barium - leachate (TCLP)	mg/L	NS	<2.5	<5.0	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
Beryllium - leachate (TCLP)	mg/L	NS	<0.025	<0.050	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Boron - leachate (TCLP)	mg/L	NS	<0.50	<1.00	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Cadmium - leachate (TCLP)	mg/L	0.5	<0.050	<0.100	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Calcium - leachate (TCLP)	mg/L	NS	63	23	64	86	273	173	23	239	87	70	97
Chromium - leachate (TCLP)	mg/L	5	<0.25	<0.50	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Cobalt - leachate (TCLP)	mg/L	NS	<0.050	<0.100	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Copper - leachate (TCLP)	mg/L	NS	<0.050	<0.100	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Iron - leachate (TCLP)	mg/L	NS	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Lead - leachate (TCLP)	mg/L	600	<0.25	<0.50	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Magnesium - leachate (TCLP)	mg/L	NS	6.4	8.5	9.2	10.9	23.8	10.5	11.4	14.2	16.2	10.9	15.0
Nickel - leachate (TCLP)	mg/L	NS	<0.25	<0.50	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25
Selenium - leachate (TCLP)	mg/L	NS	<0.10	<0.20	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Silver - leachate (TCLP)	mg/L	5	<0.050	<0.100	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Thallium - leachate (TCLP)	mg/L	NS	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium - leachate (TCLP)	mg/L	NS	<0.20	<0.40	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vanadium - leachate (TCLP)	mg/L	NS	<0.15	<0.30	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15
Zinc - leachate (TCLP)	mg/L	500	<0.50	<1.00	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Zirconium - leachate (TCLP)	mg/L	NS	<10	<20	<10	<10	<10	<10	<10	<10	<10	<10	<10
Non-Volatile Extraction Details	I in TCLP Leachate												
TCLP final extract pH		NS	6.34	4.93	5.00	4.98	5.24	5.10	4.85	5.09	4.99	6.78	6.19
TCLP initial extract pH		NS	4.94	4.90	4.90	4.90	4.90	4.94	4.94	4.94	4.94	4.94	4.94
pH, TCLP 1st preliminary		NS	8.32	4.15	5.86	5.29	7.05	7.82	4.83	7.05	6.25	8.03	8.36
pH, TCLP 2nd preliminary		NS	1.37	1.34	1.37	1.37	1.88	1.67		2.39	1.46	1.39	1.39

Schedule IV	Standards for Solid Waste/Process Residuals Suitable for Landfill
-	Not analyzed
<	Less than reported detection limit
NS	No standard
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Ī

Table 4: Summary of Soil Analyti		Sampling Location	OMR23-38-0.1	TP23-23-0.1	TP23-24-0.2	TP23-25-0.1	TP23-26-02	TP23-27-0.1	TP23-28-0.2	TP23-29-0.3	TP23-30-0.4	TP23-30-0.4	Relative
		Date Sampled		29-Sep-23	Percent								
			-							-		-	
		Lab Sample ID	EO2309073-038	EO2309073-023	EO2309073-024	EO2309073-025	EO2309073-026	EO2309073-027	EO2309073-028	EO2309073-029	EO2309073-030	EO2309073-045	Difference
		Soil Type	Sand & Gravel	Peat	Silt/Peat	Silt/Peat	Silt/Peat	Silt/Peat	Silt/Peat	Silt	Silt	Silt	
		Sample Depth (m)	0-0.1	0-0.1	0-0.2	0-0.1	0-0.2	0-0.1	0-0.2	0-0.3	0-0.4	0-0.4	
		Sample Type	Normal	Duplicate									
		Standard											
Analyte	Unit	Schedule IV											RPD %
Lab Results													
Metals in TCLP Leachate													
Antimony - leachate (TCLP)	mg/L	NS	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	*
Arsenic - leachate (TCLP)	mg/L	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	*
Barium - leachate (TCLP)	mg/L	NS	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	*
Beryllium - leachate (TCLP)	mg/L	NS	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	*
Boron - leachate (TCLP)	mg/L	NS	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	*
Cadmium - leachate (TCLP)	mg/L	0.5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*
Calcium - leachate (TCLP)	mg/L	NS	63	81	176	250	232	142	193	136	159	151	5.2%
Chromium - leachate (TCLP)	mg/L	5	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*
Cobalt - leachate (TCLP)	mg/L	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*
Copper - leachate (TCLP)	mg/L	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*
Iron - leachate (TCLP)	mg/L	NS	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	*
Lead - leachate (TCLP)	mg/L	600	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*
Magnesium - leachate (TCLP)	mg/L	NS	6.4	21.9	17.1	22.8	16.8	19.6	11.1	6.9	9.9	9.8	1.0%
Nickel - leachate (TCLP)	mg/L	NS	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*
Selenium - leachate (TCLP)	mg/L	NS	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	*
Silver - leachate (TCLP)	mg/L	5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*
Thallium - leachate (TCLP)	mg/L	NS	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	*
Uranium - leachate (TCLP)	mg/L	NS	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	*
Vanadium - leachate (TCLP)	mg/L	NS	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	*
Zinc - leachate (TCLP)	mg/L	500	<0.50	1.37	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	*
Zirconium - leachate (TCLP)	mg/L	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	*
Non-Volatile Extraction Details i	n TCLP Leachate												
TCLP final extract pH		NS	6.34	5.02	5.02	5.10	5.11	5.03	5.05	5.08	5.06	5.08	0.4%
TCLP initial extract pH		NS	4.94	4.94	4.94	4.94	4.94	4.93	4.93	4.93	4.93	4.94	0.2%
pH, TCLP 1st preliminary		NS	8.32	6.48	6.73	6.97	6.90	5.99	6.18	6.62	6.85	6.63	3.3%
pH, TCLP 2nd preliminary Accompanying lab reports: ALS -		NS	1.37	1.38	1.77	2.57	2.20	1.87	1.78	1.76	1.78	1.95	9.1%

Accompanying lab reports. ALC	
Schedule IV	Standards for Solid Waste/Process Residuals Suitable for Landfill
-	Not analyzed
<	Less than reported detection limit
NS	No standard
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Table 4: Summary of Soil Analytic	cal Results - Toxicity Charact											
		Sampling Location		TP23-31-0.3	TP23-32-0.3	TP23-33-0.1	TP23-34-0.2	TP23-34-0.2	Relative	TP23-35-0.2	TP23-36-0.2	TP23-37-0.1
		Date Sampled	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	Percent	29-Sep-23	29-Sep-23	29-Sep-23
		Lab Sample ID	EO2309073-038	EO2309073-031	EO2309073-032	EO2309073-033	EO2309073-034	EO2309073-046	Difference	EO2309073-035	EO2309073-036	EO2309073-03
		Soil Type	Sand & Gravel	Silt	Silt	Silt/Peat	Peat	Peat		Silt/Peat	Silt	Silt/Peat
		Sample Depth (m)	0-0.1	0-0.3	0-0.3	0-0.1	0-0.2	0-0.2		0-0.2	0-0.2	0-0.1
		Sample Type	Normal	Normal	Normal	Normal	Normal	Duplicate		Normal	Normal	Normal
		Standard										
Analyte	Unit	Schedule IV							RPD %			
Lab Results												
Metals in TCLP Leachate												
Antimony - leachate (TCLP)	mg/L	NS	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	*	<0.10	<0.10	<0.10
Arsenic - leachate (TCLP)	mg/L	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	*	<1.0	<1.0	<1.0
Barium - leachate (TCLP)	mg/L	NS	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	*	<2.5	<2.5	<2.5
Beryllium - leachate (TCLP)	mg/L	NS	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	*	<0.025	<0.025	<0.025
Boron - leachate (TCLP)	mg/L	NS	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	*	<0.50	<0.50	<0.50
Cadmium - leachate (TCLP)	mg/L	0.5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050
Calcium - leachate (TCLP)	mg/L	NS	63	142	164	220	205	201	2.0%	299	195	108
Chromium - leachate (TCLP)	mg/L	5	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*	<0.25	<0.25	<0.25
Cobalt - leachate (TCLP)	mg/L	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050
Copper - leachate (TCLP)	mg/L	NS	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050
Iron - leachate (TCLP)	mg/L	NS	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	*	<5.0	<5.0	<5.0
Lead - leachate (TCLP)	mg/L	600	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*	<0.25	<0.25	<0.25
Magnesium - leachate (TCLP)	mg/L	NS	6.4	9.4	9.4	13.3	8.4	7.6	10.0%	11.8	7.7	8.9
Nickel - leachate (TCLP)	mg/L	NS	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	*	<0.25	<0.25	<0.25
Selenium - leachate (TCLP)	mg/L	NS	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	*	<0.10	<0.10	<0.10
Silver - leachate (TCLP)	mg/L	5	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050
Thallium - leachate (TCLP)	mg/L	NS	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	*	<1.0	<1.0	<1.0
Uranium - leachate (TCLP)	mg/L	NS	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	*	<0.20	<0.20	<0.20
Vanadium - leachate (TCLP)	mg/L	NS	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	*	<0.15	<0.15	<0.15
Zinc - leachate (TCLP)	mg/L	500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	*	<0.50	<0.50	<0.50
Zirconium - leachate (TCLP)	mg/L	NS	<10	<10	<10	<10	<10	<10	*	<10	<10	<10
Non-Volatile Extraction Details ir	n TCLP Leachate											
TCLP final extract pH		NS	6.34	5.08	5.09	5.50	5.09	5.11	0.4%	5.19	5.12	4.93
TCLP initial extract pH		NS	4.94	4.93	4.93	4.90	4.93	4.94	0.2%	4.93	4.93	4.93
pH, TCLP 1st preliminary		NS	8.32	6.78	6.78	7.57	6.52	5.18	22.9%	7.22	7.15	5.88
pH, TCLP 2nd preliminary	E02309073	NS	1.37	1.81	1.94	1.49	2.19	2.55	15.2%	2.66	2.09	2.11

Accompanying lab reports. ALC	
Schedule IV	Standards for Solid Waste/Process Residuals Suitable for Landfill
-	Not analyzed
<	Less than reported detection limit
NS	No standard
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Table 5: Summary of Soil Analytical Results - General Parameters

Table 5: Summary of Soil Analytical Results - Gene	eral Parameters			1	1		1		1		
		Sampling Location		OMR23-39-0.1	OMR23-40-0.1	OMR23-41-0.1	OMR23-42-0.1	TP23-01-0.2	TP23-02-0.2	TP23-03-0.1	TP23-04-0.1
		Date Sampled	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	27-Sep-23	27-Sep-23	27-Sep-23	28-Sep-23
	Lab Sample II					EO2309073-041	EO2309073-042	EO2309073-001	EO2309073-002	EO2309073-003	EO2309073-004
		Soil Type	Sand & Gravel	Silt	Peat	Peat	Peat				
		Sample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.2	0-0.2	0-0.1	0-0.1
		Sample Type	Normal								
		Guideline									
Analyte	Unit	NWT Tier 1 RL/PL CS/FS									
Lab Results											
General											
Moisture	% wet	NG	3.33	3.77	4.81	6.29	7.10	16.1	47.0	43.8	38.1
Available ammonium (as N)	µg/g	NG	<1.0	<1.0	<1.0	<1.1	<1.1	8.9	25.0	19.2	13.6
Total carbon (percent)	%	NG	0.573	1.09	1.11	1.72	1.00	7.77	45.6	48.4	46.2
Inorganic carbon (as CaCO3 equivalent) (percent)	%	NG	0.62	1.23	2.06	7.83	1.11	1.87	3.26	3.03	1.51
Calcium (in saturated paste)	mg/L	NG	31.9	33.3	36.9	324	156	67.6	41.1	25.6	17.3
Calcium (in saturated paste) (mass/mass)	mg/kg	NG	8.9	14.3	11.7	119	57.4	51.0	258	176	113
Inorganic carbon (percent)	%	NG	0.075	0.148	0.248	0.939	0.133	0.225	0.391	0.364	0.182
Total organic carbon (percent)	%	NG	0.498	0.942	0.862	0.781	0.867	7.54	45.2	48.0	46.0
Chloride (in saturated paste) (mass/mass)	mg/kg	NG	<10	<10	<10	<10	<10	<15	<126	<138	<131
Chloride (in saturated paste)	mg/L	NG	<20	<20	<20	<20	<20	<20	<20	<20	<20
Conductivity (in saturated paste)	dS/m	2	0.171	0.209	0.172	1.34	0.997	0.274	0.172	0.113	0.142
Magnesium (in saturated paste)	mg/L	NG	<5.0	6.8	<5.0	29.4	27.0	9.2	5.1	<5.0	5.4
Magnesium (in saturated paste) (mass/mass)	mg/kg	NG	<5.0	<5.0	<5.0	10.8	9.9	6.9	32.0	<34.4	35.4
Moisture	% wet	NG	3.33	3.77	4.81	6.29	7.10	16.1	47.0	43.8	38.1
Potassium (in saturated paste)	mg/L	NG	5.8	26.9	6.0	16.3	46.4	<5.0	9.3	<5.0	12.2
Potassium (in saturated paste) (mass/mass)	mg/kg	NG	<5.0	11.5	<5.0	6.0	17.1	<5.0	58.4	<34.4	80.0
Percent saturation	%	NG	27.9	42.9	31.8	36.8	36.8	75.5	628	688	656
Sodium (in saturated paste) (mass/mass)	mg/kg	NG	<5.0	<5.0	<5.0	<5.0	5.5	<5.0	<31.4	<34.4	<32.8
Sodium (in saturated paste)	mg/L	NG	<5.0	<5.0	<5.0	<5.0	15.0	<5.0	<5.0	<5.0	<5.0
Sodium adsorption ratio		5	<0.10	<0.10	<0.10	<0.10	0.29	<0.10	<0.10	<0.10	<0.10
Available sulphate - as sulphur	µg/g	NG	<6.0	<6.0	6.4	155	51.7	<15.0	<29.7	<30.5	<29.7
Sulphate (in saturated paste) (mass/mass)	mg/kg	NG	<8.0	<8.0	9.4	269	150	34.4	179	49.5	112
Sulphate (in saturated paste)	mg/L	NG	21.6	17.7	29.7	731	407	45.5	28.5	7.2	17.1
Temperature, oven	°C	NG	<38	<38	<38	<38	<38	<38	<38	<38	<38

Accompanying lab reports: ALS - E02309073

NWT Tier 1 RL/PL CS/FS	Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil
NWT Tier 1 RL/PL CS/FS	Highlighted value exceeds NWT Tier 1 RL/PL CS/FS
<	Less than reported detection limit
NG	No guideline
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Table 5: Summary of Soil Analytical Results - General Parameters

Table 5: Summary of Soil Analytical Results - Gene	rai Parameters	Sampling Location	TP23-04-0.1	Relative	TP23-05-0.1	TP23-06-0.1	TP23-07-0.1	TP23-08-0.2	TP23-08-0.2	Relative	TP23-09-0.2
		Date Sampled		Percent	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	28-Sep-23	Percent	28-Sep-23
		Date Sampled	20-3ep-23	Percent	20-3ep-23	20-3ep-23	20-3ep-23	20-3ep-23	20-3ep-23	Percent	20-3ep-23
		Lab Sample ID	EO2309073-043	Difference	EO2309073-005	EO2309073-006	EO2309073-007	EO2309073-008	EO2309073-044	Difference	EO2309073-009
		Soil Type	Peat		Silt/Peat	Peat	Peat	Silt/Peat	Silt/Peat		Peat
Sample Depth (m)			0-0.1	ł	0-0.1	0-0.1	0-0.1	0-0.2	0-0.2		0-0.2
		Sample Type	Duplicate		Normal	Normal	Normal	Normal	Duplicate		Normal
		Guideline									
Analyte	Unit	NWT Tier 1 RL/PL CS/FS		RPD %						RPD %	
Lab Results											
General											
Moisture	% wet	NG	47.7	22.4%	41.7	50.6	45.1	22.1	17.5	23.2%	40.4
Available ammonium (as N)	µg/g	NG	39.4	*	32.6	25.5	25.3	8.3	8.9	7.0%	13.7
Total carbon (percent)	%	NG	41.9	9.8%	31.2	42.8	45.3	23.9	16.2	38.4%	47.7
Inorganic carbon (as CaCO3 equivalent) (percent)	%	NG	1.23	20.4%	2.02	3.48	3.80	1.07	1.38	25.3%	1.80
Calcium (in saturated paste)	mg/L	NG	22.0	23.9%	27.4	41.0	27.2	32.7	20.0	48.2%	10.0
Calcium (in saturated paste) (mass/mass)	mg/kg	NG	99.0	13.2%	77.5	276	191	70.6	112	45.3%	71.1
Inorganic carbon (percent)	%	NG	0.148	20.6%	0.242	0.418	0.456	0.129	0.166	25.1%	0.216
Total organic carbon (percent)	%	NG	41.8	9.6%	31.0	42.4	44.8	23.8	16.0	39.2%	47.5
Chloride (in saturated paste) (mass/mass)	mg/kg	NG	<90	*	<57	<134	<140	<43	<112	*	<142
Chloride (in saturated paste)	mg/L	NG	<20	*	<20	<20	<20	<20	<20	*	<20
Conductivity (in saturated paste)	dS/m	2	0.156	9.4%	0.151	0.193	0.131	0.136	0.107	23.9%	0.069
Magnesium (in saturated paste)	mg/L	NG	5.2	3.8%	5.1	5.4	<5.0	<5.0	<5.0	*	<5.0
Magnesium (in saturated paste) (mass/mass)	mg/kg	NG	23.4	40.8%	14.4	36.3	<35.1	<10.8	<27.9	*	<35.6
Moisture	% wet	NG	47.7	22.4%	41.7	50.6	45.1	22.1	17.5	23.2%	40.4
Potassium (in saturated paste)	mg/L	NG	14.4	16.5%	7.0	9.5	<5.0	<5.0	7.8	*	<5.0
Potassium (in saturated paste) (mass/mass)	mg/kg	NG	64.8	21.0%	19.8	63.8	<35.1	<10.8	43.5	*	<35.6
Percent saturation	%	NG	450	37.3%	283	672	702	216	558	88.4%	711
Sodium (in saturated paste) (mass/mass)	mg/kg	NG	<22.5	*	<14.2	<33.6	<35.1	<10.8	<27.9	*	<35.6
Sodium (in saturated paste)	mg/L	NG	<5.0	*	<5.0	<5.0	<5.0	<5.0	<5.0	*	<5.0
Sodium adsorption ratio		5	<0.10	*	<0.10	<0.10	<0.10	<0.10	<0.10	*	<0.10
Available sulphate - as sulphur	µg/g	NG	<29.9	*	<29.5	<30.2	<30.7	<29.3	<14.8	*	<29.6
Sulphate (in saturated paste) (mass/mass)	mg/kg	NG	78.3	35.4%	50.9	202	84.2	28.5	48.5	*	51.2
Sulphate (in saturated paste)	mg/L	NG	17.4	1.7%	18.0	30.0	12.0	13.2	8.7	41.1%	7.2
Temperature, oven	°C	NG	<38	*	<38	<38	<38	<38	<38	*	<38

Accompanying lab reports: ALS - E02309073

NWT Tier 1 RL/PL CS/FS	Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil						
NWT Tier 1 RL/PL CS/FS	Highlighted value exceeds NWT Tier 1 RL/PL CS/FS						
<	Less than reported detection limit						
NG	No guideline						
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.						
51%	RPD value greater than the target criteria of 50% for soil						

		Sampling Location	TP23-10-0.1	TP23-11-0.1	TP23-12-0.1	TP23-13-0.1	TP23-14-0.1	TP23-15-0.1	TP23-16-0.1	TP23-17-0.3	TP23-18-0.1
		Date Sampled	28-Sep-23								
		Lab Sample ID	EO2309073-010	EO2309073-011	EO2309073-012	EO2309073-013	EO2309073-014	EO2309073-015	EO2309073-016	EO2309073-017	EO2309073-018
		Soil Type	Peat	Silt/Peat	Peat	Peat	Peat	Peat	Peat	Silt/Peat	Peat
		Sample Depth (m)	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.1	0-0.3	0-0.1
		Sample Type	Normal								
		Guideline									
Analyte	Unit	NWT Tier 1 RL/PL CS/FS									
Lab Results											
General											
Moisture	% wet	NG	42.3	7.72	30.3	34.0	15.3	27.5	41.3	71.4	35.1
Available ammonium (as N)	μg/g	NG	24.8	<5.4	29.3	9.0	34.4	7.0	25.7	24.4	31.1
Total carbon (percent)	%	NG	41.6	3.38	36.7	42.3	30.7	23.2	39.3	39.0	41.2
Inorganic carbon (as CaCO3 equivalent) (percent)	%	NG	4.49	0.61	2.98	0.83	2.54	1.40	5.30	5.95	1.79
Calcium (in saturated paste)	mg/L	NG	43.7	22.1	17.0	24.5	26.7	23.8	47.5	42.9	33.7
Calcium (in saturated paste) (mass/mass)	mg/kg	NG	227	16.6	109	96.5	129	106	237	227	236
Inorganic carbon (percent)	%	NG	0.539	0.073	0.357	0.099	0.305	0.168	0.635	0.713	0.215
Total organic carbon (percent)	%	NG	41.1	3.31	36.3	42.2	30.4	23.0	38.7	38.3	41.0
Chloride (in saturated paste) (mass/mass)	mg/kg	NG	<104	<15	<129	83	<96	<89	<100	<106	<140
Chloride (in saturated paste)	mg/L	NG	<20	<20	<20	21	<20	<20	<20	<20	<20
Conductivity (in saturated paste)	dS/m	2	0.181	0.099	0.102	0.242	0.284	0.119	0.174	0.160	0.150
Magnesium (in saturated paste)	mg/L	NG	5.4	<5.0	<5.0	10.5	5.4	<5.0	5.3	<5.0	5.0
Magnesium (in saturated paste) (mass/mass)	mg/kg	NG	28.1	<5.0	<32.2	41.4	26.0	<22.4	26.4	<26.5	<35.0
Moisture	% wet	NG	42.3	7.72	30.3	34.0	15.3	27.5	41.3	71.4	35.1
Potassium (in saturated paste)	mg/L	NG	9.1	<5.0	6.5	45.4	15.9	6.9	5.4	<5.0	7.2
Potassium (in saturated paste) (mass/mass)	mg/kg	NG	47.3	<5.0	41.9	179	76.6	30.8	26.9	<26.5	50.5
Percent saturation	%	NG	520	74.9	644	394	482	447	499	530	701
Sodium (in saturated paste) (mass/mass)	mg/kg	NG	<26.0	<5.0	<32.2	<19.7	41.4	<22.4	<24.9	<26.5	<35.0
Sodium (in saturated paste)	mg/L	NG	<5.0	<5.0	<5.0	<5.0	8.6	<5.0	<5.0	<5.0	<5.0
Sodium adsorption ratio		5	<0.10	<0.10	<0.10	<0.10	0.40	<0.10	<0.10	<0.10	<0.10
Available sulphate - as sulphur	hð\ð	NG	<29.7	<14.9	<30.5	<30.0	<29.8	<29.9	<30.6	62.7	44.4
Sulphate (in saturated paste) (mass/mass)	mg/kg	NG	131	8.1	75.3	88.6	121	56.3	67.4	168	200
Sulphate (in saturated paste)	mg/L	NG	25.2	10.8	11.7	22.5	25.2	12.6	13.5	31.8	28.5
Temperature, oven	°C	NG	<38	<38	<38	<38	<38	<38	<38	<38	<38

NWT Tier 1 RL/PL CS/FS	Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil
	Highlighted value exceeds NWT Tier 1 RL/PL CS/FS
<	Less than reported detection limit
NG	No guideline
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Table 5: Summary of Soil Analytical Results - Gene		Sampling Location	TP23-19-0.1	TP23-20-0.1	TP23-21-0.3	TP23-22-0.2	TP23-23-0.1	TP23-24-0.2	TP23-25-0.1	TP23-26-02	TP23-27-0.1
		Date Sampled		28-Sep-23	28-Sep-23	28-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23
		-					-		-		20 000 20
		Lab Sample ID	EO2309073-019	EO2309073-020	EO2309073-021	EO2309073-022	EO2309073-023	EO2309073-024	EO2309073-025	5 EO2309073-026	EO2309073-027
		Soil Type	Peat	Peat	Silt/Peat	Silt	Peat	Silt/Peat	Silt/Peat	Silt/Peat	Silt/Peat
		Sample Depth (m)	0-0.1	0-0.1	0-0.3	0-0.2	0-0.1	0-0.2	0-0.1	0-0.2	0-0.1
		Sample Type	Normal	Normal							
		Guideline									
Analyte	Unit	NWT Tier 1 RL/PL CS/FS									
Lab Results											
General											
Moisture	% wet	NG	40.0	16.1	14.2	12.7	18.9	39.7	43.3	58.4	40.4
Available ammonium (as N)	µg/g	NG	27.8	12.4	<6.6	<5.7	<6.3	19.5	22.9	21.9	24.8
Total carbon (percent)	%	NG	34.6	22.0	7.33	1.74	12.5	44.1	41.4	39.2	27.3
Inorganic carbon (as CaCO3 equivalent) (percent)	%	NG	3.82	1.78	1.52	1.13	1.51	3.90	5.46	6.14	3.16
Calcium (in saturated paste)	mg/L	NG	67.0	37.6	98.6	53.2	26.6	39.8	64.4	80.6	51.7
Calcium (in saturated paste) (mass/mass)	mg/kg	NG	372	153	48.7	23.7	166	224	216	361	366
Inorganic carbon (percent)	%	NG	0.458	0.213	0.183	0.136	0.182	0.468	0.656	0.736	0.380
Total organic carbon (percent)	%	NG	34.1	21.8	7.15	1.60	12.3	43.6	40.7	38.5	26.9
Chloride (in saturated paste) (mass/mass)	mg/kg	NG	<111	<82	<10	<10	<125	<113	<67	<90	<141
Chloride (in saturated paste)	mg/L	NG	<20	<20	<20	<20	<20	<20	<20	<20	<20
Conductivity (in saturated paste)	dS/m	2	0.257	0.192	0.541	0.251	0.140	0.184	0.218	0.285	0.237
Magnesium (in saturated paste)	mg/L	NG	6.3	10.0	16.2	7.7	8.1	5.9	7.4	8.0	8.5
Magnesium (in saturated paste) (mass/mass)	mg/kg	NG	35.0	40.8	8.0	<5.0	50.5	33.3	24.8	35.8	60.1
Moisture	% wet	NG	40.0	16.1	14.2	12.7	18.9	39.7	43.3	58.4	40.4
Potassium (in saturated paste)	mg/L	NG	15.4	17.6	<5.0	<5.0	8.0	18.4	5.2	<5.0	26.2
Potassium (in saturated paste) (mass/mass)	mg/kg	NG	85.6	71.8	<5.0	<5.0	49.9	104	17.4	<22.4	185
Percent saturation	%	NG	556	408	49.4	44.6	624	564	335	448	707
Sodium (in saturated paste) (mass/mass)	mg/kg	NG	<27.8	<20.4	<5.0	<5.0	<31.2	<28.2	<16.8	<22.4	<35.3
Sodium (in saturated paste)	mg/L	NG	<5.0	<5.0	5.9	5.2	<5.0	<5.0	<5.0	<5.0	<5.0
Sodium adsorption ratio		5	<0.10	<0.10	0.14	0.18	<0.10	<0.10	<0.10	<0.10	<0.10
Available sulphate - as sulphur	µg/g	NG	33.5	<30.8	39.2	7.4	<29.9	<30.0	<29.8	82.0	<29.6
Sulphate (in saturated paste) (mass/mass)	mg/kg	NG	177	91.8	76.6	20.4	74.9	94.8	77.4	366	178
Sulphate (in saturated paste)	mg/L	NG	31.8	22.5	155	45.8	12.0	16.8	23.1	81.8	25.2
Temperature, oven	°C	NG	<38	<38	<38	<38	<38	<38	<38	<38	<38

NWT Tier 1 RL/PL CS/FS	Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil
NWT Tier 1 RL/PL CS/FS	Highlighted value exceeds NWT Tier 1 RL/PL CS/FS
<	Less than reported detection limit
NG	No guideline
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

		Sampling Location	TP23-28-0.2	TP23-29-0.3	TP23-30-0.4	TP23-30-0.4	Relative	TP23-31-0.3	TP23-32-0.3	TP23-33-0.1	TP23-34-0.2
		Date Sampled	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23	Percent	29-Sep-23	29-Sep-23	29-Sep-23	29-Sep-23
		Lab Sample ID	EO2309073-028	EO2309073-029	EO2309073-030	EO2309073-045	Difference	EO2309073-031	EO2309073-032	EO2309073-033	EO2309073-034
								0.11			
		Soil Type	Silt/Peat	Silt	Silt	Silt		Silt	Silt	Silt/Peat	Peat
		Sample Depth (m)	0-0.2	0-0.3	0-0.4	0-0.4		0-0.3	0-0.3	0-0.1	0-0.2
		Sample Type	Normal	Normal	Normal	Duplicate		Normal	Normal	Normal	Normal
		Guideline						-			
Analyte	Unit	NWT Tier 1 RL/PL CS/FS					RPD %				
Lab Results											
General											
Moisture	% wet	NG	44.3	75.2	72.3	73.2	1.2%	74.3	74.0	24.0	53.0
Available ammonium (as N)	µg/g	NG	30.9	18.7	23.0	17.6	26.6%	14.0	17.3	10.3	21.1
Total carbon (percent)	%	NG	42.7	41.6	39.2	36.6	6.9%	37.4	39.1	13.7	38.5
Inorganic carbon (as CaCO3 equivalent) (percent)	%	NG	5.40	5.42	5.87	5.57	5.2%	4.80	5.37	2.92	4.97
Calcium (in saturated paste)	mg/L	NG	44.6	80.4	111	100	10.4%	138	147	63.8	44.3
Calcium (in saturated paste) (mass/mass)	mg/kg	NG	239	526	720	467	42.6%	970	1120	82.9	190
Inorganic carbon (percent)	%	NG	0.648	0.650	0.704	0.669	5.1%	0.576	0.644	0.351	0.597
Total organic carbon (percent)	%	NG	42.0	41.0	38.5	35.9	7.0%	36.8	38.4	13.3	37.9
Chloride (in saturated paste) (mass/mass)	mg/kg	NG	<107	<131	<130	<93	*	<141	<153	<26	<86
Chloride (in saturated paste)	mg/L	NG	<20	<20	<20	<20	*	<20	<20	<20	<20
Conductivity (in saturated paste)	dS/m	2	0.164	0.297	0.571	0.468	19.8%	0.685	0.682	0.225	0.150
Magnesium (in saturated paste)	mg/L	NG	<5.0	6.0	10.6	9.0	16.3%	12.3	11.1	5.9	<5.0
Magnesium (in saturated paste) (mass/mass)	mg/kg	NG	<26.8	39.2	68.8	42.0	48.4%	86.5	84.7	7.7	<21.5
Moisture	% wet	NG	44.3	75.2	72.3	73.2	1.2%	74.3	74.0	24.0	53.0
Potassium (in saturated paste)	mg/L	NG	8.2	<5.0	<5.0	<5.0	*	<5.0	<5.0	<5.0	<5.0
Potassium (in saturated paste) (mass/mass)	mg/kg	NG	43.9	<32.7	<32.4	<23.3	*	<35.2	<38.2	<6.5	<21.5
Percent saturation	%	NG	535	654	649	467	32.6%	703	763	130	430
Sodium (in saturated paste) (mass/mass)	mg/kg	NG	<26.8	<32.7	<32.4	<23.3	*	<35.2	<38.2	<6.5	<21.5
Sodium (in saturated paste)	mg/L	NG	<5.0	<5.0	<5.0	<5.0	*	<5.0	<5.0	<5.0	<5.0
Sodium adsorption ratio		5	<0.10	<0.10	<0.10	<0.10	*	<0.10	<0.10	<0.10	<0.10
Available sulphate - as sulphur	μg/g	NG	<30.6	119	253	219	14.4%	452	258	<15.1	<30.3
Sulphate (in saturated paste) (mass/mass)	mg/kg	NG	80.2	759	1540	761	67.7%	2150	2110	30.4	67.1
Sulphate (in saturated paste)	mg/L	NG	15.0	116	237	163	37.0%	306	277	23.4	15.6
Temperature, oven	C°	NG	<38	<38	<38	<38	*	<38	<38	<38	<38

NWT Tier 1 RL/PL CS/FS	Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil
NWT Tier 1 RL/PL CS/FS	Highlighted value exceeds NWT Tier 1 RL/PL CS/FS
<	Less than reported detection limit
NG	No guideline
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

		Sampling Location	TP23-34-0.2	Relative	TP23-35-0.2	TP23-36-0.2	TP23-37-0.1
		Date Sampled	29-Sep-23	Percent	29-Sep-23	29-Sep-23	29-Sep-23
		Lab Sample ID	EO2309073-046	Difference	EO2309073-035	EO2309073-036	EO2309073-037
		Soil Type	Peat		Silt/Peat	Silt	Silt/Peat
		Sample Depth (m)			0-0.2	0-0.2	0-0.1
		Sample Type	Duplicate		Normal	Normal	Normal
		Guideline					
Analyte	Unit	NWT Tier 1 RL/PL CS/FS		RPD %			
Lab Results							
General							
Moisture	% wet	NG	55.1	3.9%	43.2	66.7	46.1
Available ammonium (as N)	µg/g	NG	27.5	26.3%	22.8	19.9	19.4
Total carbon (percent)	%	NG	37.8	1.8%	39.3	40.8	41.5
Inorganic carbon (as CaCO3 equivalent) (percent)	%	NG	6.30	23.6%	7.11	6.32	2.95
Calcium (in saturated paste)	mg/L	NG	43.6	1.6%	55.7	48.0	15.8
Calcium (in saturated paste) (mass/mass)	mg/kg	NG	144	27.5%	238	289	81.0
Inorganic carbon (percent)	%	NG	0.756	23.5%	0.853	0.758	0.354
Total organic carbon (percent)	%	NG	37.0	2.4%	38.4	40.0	41.1
Chloride (in saturated paste) (mass/mass)	mg/kg	NG	<66	*	<85	<120	<102
Chloride (in saturated paste)	mg/L	NG	<20	*	<20	<20	<20
Conductivity (in saturated paste)	dS/m	2	0.139	7.6%	0.202	0.170	0.078
Magnesium (in saturated paste)	mg/L	NG	<5.0	*	<5.0	<5.0	<5.0
Magnesium (in saturated paste) (mass/mass)	mg/kg	NG	<16.6	*	<21.4	<30.1	<25.6
Moisture	% wet	NG	55.1	3.9%	43.2	66.7	46.1
Potassium (in saturated paste)	mg/L	NG	<5.0	*	<5.0	<5.0	<5.0
Potassium (in saturated paste) (mass/mass)	mg/kg	NG	<16.6	*	<21.4	<30.1	<25.6
Percent saturation	%	NG	331	26.0%	427	602	513
Sodium (in saturated paste) (mass/mass)	mg/kg	NG	<16.6	*	<21.4	<30.1	<25.6
Sodium (in saturated paste)	mg/L	NG	<5.0	*	<5.0	<5.0	<5.0
Sodium adsorption ratio		5	<0.10	*	<0.10	<0.10	<0.10
Available sulphate - as sulphur	µg/g	NG	<29.6	*	<30.4	<29.6	<29.8
Sulphate (in saturated paste) (mass/mass)	mg/kg	NG	58.6	13.5%	50.0	141	52.3
Sulphate (in saturated paste)	mg/L	NG	17.7	12.6%	11.7	23.4	10.2
Temperature, oven	°C	NG	<38	*	<38	<38	<38

NWT Tier 1 RL/PL CS/FS	Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use for coarse-grained soil/fine-grained soil
NWT Tier 1 RL/PL CS/FS	Highlighted value exceeds NWT Tier 1 RL/PL CS/FS
<	Less than reported detection limit
NG	No guideline
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
51%	RPD value greater than the target criteria of 50% for soil

Guideline Notes for Reports for 2023-8451 Tin Can Hill Soil Quality Results

1. Notes for Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use and Coarse-grained Soil (NWT Tier 1 RL/PL CS)

General Notes:

Tier 1 criteria-based approach was used. Reference: Table A1 and Table A7, Guideline for Contaminated Site Remediation, November 2003 by Environment Division, Government of the Northwest Territories.

Note 1.1 for Arsenic (inorganic):

The site-specific human health-based soil quality remediation objective for arsenic in Yellowknife area soils for industrial land use is 340 mg/kg and 160 mg/kg for residential.

2. Notes for Northwest Territories Tier 1 Soil Remediation Guidelines for Residential/ Parkland Land Use and Finegrained Soil (NWT Tier 1 RL/PL FS)

General Notes:

Tier 1 criteria-based approach was used. Reference: Table A1 and Table A7, Guideline for Contaminated Site Remediation, November 2003 by Environment Division, Government of the Northwest Territories.

Table A1 "Summary of Tier 1 levels for PHCs in surface soil" contains multiple guidelines for Fraction 1 (F1-BTEX) and Fraction 2 (F2) petroleum hydrocarbons depending on site specific factors. The most stringent guidelines for fine-grained soil for F1-BTEX and F2 were used in this criteria set.

Note 2.1 for Arsenic (inorganic):

The site-specific human health-based soil quality remediation objective for arsenic in Yellowknife area soils for industrial land use is 340 mg/kg and 160 mg/kg for residential.

Table 6: Summary of Groundwater Analytical Results - Total Metals

Table 6: Summary of Groundwater Ana	aly tiour i		mpling Location	SW23-01	SW23-01	Relative	SW23-02
			Date Sampled		29-Sep-23	Percent	29-Sep-23
			Lab Sample ID	EO2309073-047	EO2309073-049	Difference	EO2309073-048
			Sample Type	Normal	Duplicate		Normal
		Guid	leline	normai	Duplicate		Normai
Analyte	Unit	CCME AL (LT)	CCME AL (ST)	ł	-	RPD %	-
Lab Results							
pH		6.5 - 9	NG	8.07	8.09	0.2%	8.02
Hardness (as CaCO3), dissolved	mg/L	NG	NG	71.9	73.6	2.3%	301
Total Metals	Ű						
Aluminum (total)	mg/L	Calc ^{1.6}	NG	0.0910	0.0926	1.7%	0.783
Antimony (total)	mg/L	NG	NG	0.00017	0.00017	0.0%	0.0205
Arsenic (total)	mg/L	0.0050 1.7	NG	0.00243	0.00248	2.0%	0.401
Barium (total)	mg/L	NG	NG	0.0363	0.0360	0.8%	0.0698
Beryllium (total)	mg/L	NG	NG	<0.000020	<0.000020	*	0.000031
Bismuth (total)	mg/L	NG	NG	<0.000050	< 0.000050	*	<0.000050
Boron (total)	mg/L	1.5 ^{1.8}	29	0.014	0.014	0.0%	0.070
Cadmium (total)	mg/L	Calc ^{1.9}	Calc ^{2.2}	0.000080	0.0000071	11.9%	0.0000871
Calcium (total)	mg/L	NG	NG	21.8	21.7	0.5%	91.2
Cesium (total)	mg/L	NG	NG	0.000013	0.000012	8.0%	0.000117
Chromium (total)	mg/L	0.0010 ^{1.10}	NG	0.00230	0.00182	23.3%	0.00414
Cobalt (total)	mg/L	NG	NG	< 0.00010	< 0.00010	*	0.00159
Copper (total)	mg/L	Calc ^{1.11}	NG	0.00147	0.00143	2.8%	0.0410
Iron (total)	mg/L	0.300	NG	0.127	0.113	11.7%	<u>1.28</u>
Lead (total)	mg/L	Calc ^{1.12}	NG	0.000130	0.000130	0.0%	0.00784
Lithium (total)	mg/L	NG	NG	0.0047	0.0039	18.6%	0.0154
Magnesium (total)	mg/L	NG	NG	5.49	5.61	2.2%	24.8
Manganese (total)	mg/L	Calc ^{1.13}	Calc ^{2.3}	0.00476	0.00509	6.7%	0.123
Molybdenum (total)	mg/L	0.073	NG	0.000694	0.000659	5.2%	0.000984
Nickel (total)	mg/L	Calc ^{1.14}	NG	0.00169	0.00152	10.6%	0.00792
Phosphorus (total, by ICPMS/ICPOES)	mg/L	N ^{1.15}	NG	< 0.050	<0.050	*	0.266
Potassium (total)	mg/L	NG	NG	1.20	1.22	1.7%	14.1
Rubidium (total)	mg/L	NG	NG	0.00129	0.00131	1.5%	0.0109
Selenium (total)	mg/L	0.0010	NG	0.000168	0.000134	22.5%	0.000220
Silicon (total, as Si)	mg/L	NG	NG	1.16	1.18	1.7%	2.95
Silver (total)	mg/L	0.00025	NG	<0.000010	<0.000010	*	0.000103
Strontium (total)	mg/L	NG	NG	0.110	0.110	0.0%	0.266
Sulphur (total)	mg/L	NG	NG	6.51	6.86	5.2%	76.0
Tellurium (total)	mg/L	NG	NG	<0.00020	<0.00020	*	<0.00020
Thallium (total)	mg/L	0.0008	NG	<0.000010	<0.000010	*	0.000011
Thorium (total)	mg/L	NG	NG	<0.00010	<0.00010	*	0.00010
Tin (total)	mg/L	NG	NG	0.00011	0.00011	0.0%	0.00012
Titanium (total)	mg/L	NG	NG	0.00281	0.00300	6.5%	0.0220
Tungsten (total)	mg/L	NG	NG	<0.00010	<0.00010	*	0.00030
Uranium (total)	mg/L	0.015 ^{1.16}	0.033 2.4	0.000371	0.000390	5.0%	0.000833
Vanadium (total)	mg/L	NG	NG	<0.00050	0.00067	*	0.00269
Zinc (total)	mg/L	0.0017 ^{1.17}	Calc ^{2.5}	<0.0030	<0.0030	*	0.0224
Zirconium (total)	mg/L	NG	NG	<0.00020	<0.00020	*	< 0.00020

Accompanying lab reports: ALS - E02309073

CCME AL (LT)

CCME. Canadian water quality guidelines for the protection of freshwater aquatic life, Long-Term Exposure guidelines.

CCME Canadian water quality quidelines for the protection of freshwater aquatic life. Short-Term Exposure

	Come. Canadian water quality guidelines for the protection of neshwater aquatic file, Short-Term Exposure
CCME AL (ST)	guidelines.
<u>CCME AL (LT)</u>	Highlighted value exceeds CCME AL (LT)
<u>CCME AL (ST)</u>	Highlighted value exceeds CCME AL (ST)
<	Less than reported detection limit
Calc	Standard dependent on hardness and calculated from a table.
NS	No Standard
	Highlighted value has a detection limit that is greater than standard
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
26%	RPD value greater than the target criteria of 25% for water

Table 7: Summary of Groundwater Analytical Results - Dissolved Metals

		Sa	mpling Location	SW23-01	SW23-01	Relative	SW23-02
			Date Sampled	29-Sep-23	29-Sep-23	Percent	29-Sep-23
Lab Sample ID				EO2309073- 047	EO2309073- 049	Difference	EO2309073 048
			Sample Type	Normal	Duplicate		Normal
Analyte	Unit	Guid	leline				
Analyte	onne	CCME AL (LT)	CCME AL (ST)			RPD %	
Lab Results							
pH		6.5 - 9	NG	8.07	8.09	0.2%	8.02
Hardness (as CaCO3), dissolved	mg/L	NG	NG	71.9	73.6	2.3%	301
Dissolved Metals							
Aluminum (dissolved)	mg/L	Calc ^{1.18}	NG	0.0139	0.0144	3.5%	0.0075
Antimony (dissolved)	mg/L	NG	NG	0.00013	0.00013	0.0%	0.0105
Arsenic (dissolved)	mg/L	0.0050 1.19	NG	0.00200	0.00207	3.4%	<u>0.324</u>
Barium (dissolved)	mg/L	NG	NG	0.0341	0.0343	0.6%	0.0444
Beryllium (dissolved)	mg/L	NG	NG	<0.000020	<0.000020	*	<0.000020
Bismuth (dissolved)	mg/L	NG	NG	<0.000050	<0.000050	*	<0.000050
Boron (dissolved)	mg/L	1.5 ^{1.20}	29	0.018	0.016	11.8%	0.066
Cadmium (dissolved)	mg/L	Calc ^{1.21}	Calc ^{2.6}	<0.000050	<0.000050	*	<0.000005
Calcium (dissolved)	mg/L	NG	NG	20.7	21.3	2.9%	84.1
Cesium (dissolved)	mg/L	NG	NG	<0.000010	<0.000010	*	0.000020
Chromium (dissolved)	mg/L	0.0010 1.22	NG	<0.00050	<0.00050	*	<0.00050
Cobalt (dissolved)	mg/L	NG	NG	<0.00010	<0.00010	*	<0.00010
Copper (dissolved)	mg/L	Calc ^{1.23}	NG	0.00116	0.00117	0.9%	0.00174
ron (dissolved)	mg/L	0.300	NG	<0.010	<0.010	*	<0.010
Lead (dissolved)	mg/L	Calc ^{1.24}	NG	<0.000050	<0.000050	*	0.000057
Lithium (dissolved)	mg/L	NG	NG	0.0035	0.0034	2.9%	0.0130
Magnesium (dissolved)	mg/L	NG	NG	4.90	4.95	1.0%	22.1
Manganese (dissolved)	mg/L	Calc ^{1.25}	Calc ^{2.7}	0.00087	0.00086	1.2%	0.0213
Molybdenum (dissolved)	mg/L	0.073	NG	0.000619	0.000570	8.2%	0.000683
Nickel (dissolved)	mg/L	Calc ^{1.26}	NG	0.00088	0.00085	3.5%	0.00174
Phosphorus (dissolved, by ICPMS/ICPOES)	mg/L	N ^{1.27}	NG	<0.050	< 0.050	*	< 0.050
Potassium (dissolved)	mg/L	NG	NG	1.17	1.17	0.0%	14.0
Rubidium (dissolved)	mg/L	NG	NG	0.00110	0.00113	2.7%	0.00981
Selenium (dissolved)	mg/L	0.0010	NG	0.000142	0.000140	1.4%	0.000050
Silicon (dissolved, as Si)	mg/L	NG	NG	0.993	1.01	1.7%	2.06
Silver (dissolved)	mg/L	0.00025	NG	<0.000010	<0.000010	*	<0.000010
Strontium (dissolved)	mg/L	NG	NG	0.111	0.106	4.6%	0.248
Sulphur (dissolved)	mg/L	NG	NG	6.63	6.44	2.9%	73.6
Tellurium (dissolved)	-	NG	NG	<0.0020	<0.00020	*	<0.00020
Thallium (dissolved)	mg/L	0.0008	NG	<0.00020	<0.00020	*	<0.00020
Thorium (dissolved)	mg/L	0.0008 NG	NG	<0.00010	<0.00010	*	<0.00010
Fin (dissolved)	mg/L					*	
· /	mg/L	NG NG	NG	<0.00010	<0.00010	*	<0.00010
Titanium (dissolved)	mg/L		NG	<0.00030	0.00030	*	< 0.00030
Tungsten (dissolved)	mg/L	NG	NG	<0.00010	<0.00010		0.00010
Jranium (dissolved)	mg/L	0.015 1.28	0.033 2.8	0.000332	0.000312	6.2% *	0.000197
Vanadium (dissolved)	mg/L	NG	NG	<0.00050	<0.00050		< 0.00050
Zinc (dissolved)	mg/L	0.0017 1.29	Calc ^{2.9}	<0.0010	<0.0010	*	< 0.0010
Zirconium (dissolved)	mg/L	NG	NG	<0.00030	<0.00030	*	< 0.00030

 CCME AL (LT)
 CCME. Canadian water quality guidelines for the protection of freshwater aquatic life, Long-Term Exposure guidelines.

 CCME AL (ST)
 CCME. Canadian water quality guidelines for the protection of freshwater aquatic life, Short-Term Exposure guidelines.

 <u>CCME AL (LT)</u>
 Highlighted value exceeds CCME AL (LT)

	guidelines.
<u>CCME AL (LT)</u>	Highlighted value exceeds CCME AL (LT)
<u>CCME AL (ST)</u>	Highlighted value exceeds CCME AL (ST)
-	Not analyzed
<	Less than reported detection limit
Calc	Standard dependent on hardness and calculated from a table.
NS	No Standard
*	RPDs are not calculated when parameter concentrations are within five times the method detection limit.
26%	RPD value greater than the target criteria of 25% for water

Table 8: Summary of Groundwater Analytical Results - Speciated Arsenic

Table 6. Guillinary of Groundwater Analyti	our reoun	opeolated Al	Serine	-			
	Sampling Location						
			Date Sampled	31-Oct-23	31-Oct-23		
	Lab Sample ID			YL2301551-001	YL2301551-002		
			Sample Type	Normal	Normal		
Analyte	Unit	Guid	leline				
Analyte	Onic	CCME AL (LT)	CCME AL (ST)				
Lab Results							
Speciated Metals							
Arsenate [As V]	mg/L	NG	NG	0.000850	0.196		
Arsenite [As III]	mg/L	NG	NG	0.000240	<0.00100		
Arsenobetaine [AsB], (as As)	mg/L	NG	NG	<0.000050	<0.00250		
Dimethylarsinic acid [DMA], (as As)	mg/L	NG	NG	0.000029	<0.00100		
Monomethylarsonic acid [MMA], (as As)	mg/L	NG	NG	<0.000020	<0.00124		
Accompanying lab reports: ALS - TL230155	1						
CCME AL (LT)	CCME.	Canadian water q	uality guidelines f	or the protection of	of freshwater aqua		
CCME AL (ST)	CCME.	Canadian water q	uality guidelines f	or the protection of	of freshwater aqua		
<u>CCME AL (LT)</u>	Highligh	ted value exceeds	s CCME AL (LT)				
<u>CCME AL (ST)</u>	Highligh	lighlighted value exceeds CCME AL (ST)					

CCME. Canadian water quality guidelines for the protection of freshwater aquatic life, Short-Term Exposure guidelines. Highlighted value exceeds CCME AL (LT) Highlighted value exceeds CCME AL (ST) Not analyzed Less than reported detection limit Standard dependent on hardness and calculated from a table. No Standard Highlighted value has a detection limit that is greater than standard

RPDs are not calculated when parameter concentrations are within five times the method detection limit.

RPD value greater than the target criteria of 25% for water

-

< Calc

NS

*

26%

Unit mg/L mg/L	CCME AL (LT)	Sample Type leline <u>CCME AL (ST)</u>	29-Sep-23 EO2309073-047 Normal	29-Sep-23 EO2309073-049 Duplicate	Percent Difference RPD %	29-Sep-23 EO2309073-048 Normal
mg/L mg/L mg/L	CCME AL (LT)	Sample Type leline <u>CCME AL (ST)</u>				
mg/L mg/L mg/L	CCME AL (LT)	eline <u>CCME AL (ST)</u>	Normal	Duplicate	RPD %	Normal
mg/L mg/L mg/L	CCME AL (LT)	eline <u>CCME AL (ST)</u>		-	RPD %	-
mg/L mg/L mg/L	CCME AL (LT)	CCME AL (ST)			RPD %	-
mg/L mg/L						-
mg/L mg/L						
mg/L mg/L						
mg/L	1.1	NG	66.9	68.5	2.4%	83.1
-	Calc ^{1.1}	NG	0.0139	0.0180	25.7%	0.0840
	NG	NG	81.6	83.6	2.4%	101
mg/L	NG	NG	4.96	5.68	13.5%	24.7
mg/L	NG	NG	5.70	5.64	1.1%	39.8
mg/L	NG	NG	<1.0	<1.0	*	<1.0
mg/L	120 ^{1.2}	640	5.47	5.46	0.2%	62.6
uS/cm	NG	NG	192	192	0.0%	813
mg/L	0.120 ^{1.3}	NG	0.088	0.088	0.0%	0.228
mg/L	NG	NG	71.9	73.6	2.3%	301
mg/L	NG	NG	<1.0	<1.0	*	<1.0
mg/L	3.0 ^{1.4}	124 ^{2.1}	0.030	0.029	3.4%	0.160
mg/L		NG	0.0300	<0.0300	*	0.160
mg/L	0.060	NG	<0.010	<0.010	*	<0.010
-	6.5 - 9	NG	8.07	8.09	0.2%	8.02
mg/L			6.54			33.8
J						32.4
-				-		499
mg/L	NG	NG	16.9	17.0	0.6%	201
neq/L	NG	NG	1.85	1.88	1.6%	7.63
neq/L	NG	NG	1.75	1.79	2.3%	7.85
%	NG	NG	-2.78	-2.45	12.6%	1.42
%	NG	NG	94.6	95.2	0.6%	103
	S/cm ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	S/cm NG ng/L 0.120 ^{1.3} ng/L NG ng/L ng/L NG ng/L ng/L 3.0 ^{1.4} ng/L 3.0 ^{1.5} ng/L 0.060 6.5 - 9 ng/L NG ng/L NG NG NG meq/L NG NG % NG NG % NG CME. Canadian water q	S/cm NG NG ng/L 0.120 ^{1.3} NG ng/L NG NG ng/L NG NG ng/L NG NG ng/L 3.0 ^{1.4} 124 ^{2.1} ng/L 3.0 ^{1.5} NG ng/L 0.060 NG ng/L 0.060 NG ng/L NG NG neq/L NG	S/cm NG NG 192 ng/L 0.120 ^{1.3} NG 0.088 ng/L NG NG 71.9 ng/L NG NG 71.9 ng/L NG NG <1.0	S/cm NG NG 192 192 ng/L 0.120 ^{1.3} NG 0.088 0.088 ng/L NG NG 71.9 73.6 ng/L NG NG <1.0	S/cm NG NG 192 192 0.0% mg/L 0.120 ^{1.3} NG 0.088 0.088 0.0% mg/L NG NG 71.9 73.6 2.3% mg/L NG NG <1.0

Table 9: Summary of Groundwater Analytical Results - General Parameters

 *
 RPDs are not calculated when parameter concentrations are within five times the method detection limit.

 26%
 RPD value greater than the target criteria of 25% for water

Guideline Notes for Reports for 2023-8451 Tin Can Hill Water Quality Results

1. Notes for CCME. Canadian water quality guidelines for the protection of freshwater aquatic life, Long-Term Exposure guidelines. (CCME AL (LT))

General Notes:

The CCME Canadian water quality guidelines for the protection of freshwater aquatic life provide both a Long-Term Exposure guideline, and Short-Term Exposure guideline for some analytes. Only the Long-Term Exposure guidelines are included in this criteria set.

Note 1.1 for Ammonia (total, as N):

The guideline for ammonia varies as a function of pH and temperature. For a pH of 8.0, the standard ranges from 2.33 mg/L for a water temperature of 0 °C down to 0.256 for a water temperature of 30 °C.

Note 1.2 for Chloride:

The Short-Term Exposure Guideline is 640 mg/L. The Long-Term Exposure Guideline is 120 mg/L.

Note 1.3 for Fluoride:

The interim guideline for the protection of freshwater aquatic life for total inorganic fluorides is 0.12 mg/L

Note 1.4 for Nitrate (as N):

The Short-Term Exposure Guideline is 124 mg/L. The Long-Term Exposure Guideline is 3.0 mg/L. The guidelines for nitrate are for protection from direct toxic effects; the guidelines do not consider indirect effects due to eutrophication.

The Long Term guideline is derived from toxicity tests utilizing NaNO3. The Long Term guideline is derived with mostly no- and some low-effect data and are intended to protect against negative effects to aquatic ecosystem structure and function during indefinite exposures (e.g. abide by the guiding principle as per CCME 2007).

Note 1.5 for Nitrate + Nitrite (as N):

Long-Term Exposure Guideline for Nitrate (as N) is 3.0 mg/L

Note 1.6 for Aluminum (total):

The guideline for aluminum is:

 $5 \,\mu$ g/L when pH is less than 6.5

100 µg/L when pH is greater than or equal to 6.5

Note 1.7 for Arsenic (total):

Guideline is for total arsenic.

Note 1.8 for Boron (total):

The Short-Term Exposure Guideline is 29 mg/L. The Long-Term Exposure Guideline is 1.5 mg/L.

Note 1.9 for Cadmium (total):

The long-term guideline for cadmium is determined on a site-specific basis according to the local water hardness. The guideline for total cadmium in $\mu g/L$ is determined as follows for long-term exposure:

1. If hardness (as CaCO3) is less than 17 mg/L then maximum is 0.04 μ g/L

2. If hardness (as CaCO3) is from 17 to 280 mg/L then maximum is based on equation:

10 raised to the power of {0.83[log(hardness)] - 2.46}

3. If hardness (as CaCO3) is greater than 280 mg/L then maximum is 0.37 μ g/L.

Note 1.10 for Chromium (total):

CCME guideline for freshwater aquatic life is 0.0010 mg/L for chromium VI. CCME interim guideline for freshwater aquatic life is 0.0089 mg/L for chromium III. The guideline of 0.0010 mg/L was used, in this report, to identify exceedances for dissolved chromium, and total chromium as a means for determining the potential for exceeding the chromium VI and/or chromium III guidelines.

Note 1.11 for Copper (total):

The guideline for copper in μ g/L is determined as follows:

When the water hardness is 0 to < 82 mg/L, the CWQG is 2 μ g/L

At hardness \geq 82 to \leq 180 mg/L the CWQG is calculated using the equation:

e raised to the power of {0.8545[In(hardness)]-1.465} * 0.2 µg/L

At hardness >180 mg/L, the CWQG is 4 µg/L

Where water hardness is reported as mg/L CaCO3.

If the water hardness is unknown, the CWQG is 2 µg/L

Note 1.12 for Lead (total):

The guideline for lead in μ g/L is determined as follows:

When the hardness is 0 to \leq 60 mg/L, the CWQG is 1 μ g/L

At hardness > 60 to \leq 180 mg/L the CWQG is calculated using the equation:

e raised to the power of {1.273[In(hardness)] - 4.705}

At hardness >180 mg/L, the CWQG is 7 µg/L

Where water hardness is reported as mg/L CaCO3.

If the water hardness is unknown, the \widetilde{CWQG} is 1 μ g/L

Note 1.13 for Manganese (total):

The guideline for dissolved manganese varies as a function of pH and hardness (as CaCO3). The guideline for dissolved manganese was used to identify exceedances for total manganese as a means for determining the potential for exceeding the guideline for dissolved manganese. The lookup table is based on results for "Hardness, Total (total as CaCO3)". (CCME Update 2019)

Note 1.14 for Nickel (total):

The guideline for nickel in μ g/L is determined as follows: When the water hardness is 0 to \leq 60 mg/L, the CWQG is 25 μ g/L At hardness > 60 to \leq 180 mg/L the CWQG is calculated using the equation: e raised to the power of {0.76[ln(hardness)] + 1.06} At hardness >180 mg/L, the CWQG is 150 μ g/L

Where water hardness is reported as mg/L CaCO3.

If the water hardness is unknown, the CWQG is 25 μ g/L

Note 1.15 for Phosphorus (total, by ICPMS/ICPOES):

Canadian Guidance Framework for Phosphorus is for developing phosphorus guidelines (does not provide guidance on other freshwater nutrients). It provides Trigger Ranges for Total Phosphorus (see Guidance Framework for Phosphorus factsheet):

ultra-oligotrophic <4 µg/L; oligotrophic 4-10 µg/L; mesotrophic 10-20 µg/L; meso-eutrophic 20-35 µg/L; eutrophic 35-100 µg/L; hyper-eutrophic >100 µg/L

Note 1.16 for Uranium (total):

The Short-Term Exposure Guideline is 33 µg/L. The Long-Term Exposure Guideline is 15 µg/L. The guidelines are for total recoverable, unfiltered analyses.

Note 1.17 for Zinc (total):

The long-term CWQG is for dissolved zinc (μ g/L) and is calculated using the following equation: CWQG = exp(0.947[ln(hardness mg·L-1)] - 0.815[pH] + 0.398[ln(DOC mg·L-1)] + 4.625). The CWQG equation is valid between hardness 23.4 and 399 mg CaCO3·L-1, pH 6.5 and 8.13 and DOC 0.3 to 22.9 mg·L-1.

The guideline value of 1.7 μ g/L in this criteria set is based on assumed water quality of 23.4 mg CaCO3·L-1 hardness, pH of 8.13 and 0.3 mg·L-1 DOC, which are the limits for the equation that provide the most stringent guideline value.

The guideline of 1.7 µg/L was used to identify exceedances for total zinc as a means for determining the potential for exceeding the guideline for dissolved zinc. (CCME Update 2018)

Note 1.18 for Aluminum (dissolved):

The guideline for aluminum is:

$5\ \mu\text{g/L}$ when pH is less than 6.5

100 μ g/L when pH is greater than or equal to 6.5

Note 1.19 for Arsenic (dissolved):

Guideline is for total arsenic.

Note 1.20 for Boron (dissolved):

The Short-Term Exposure Guideline is 29 mg/L. The Long-Term Exposure Guideline is 1.5 mg/L.

Note 1.21 for Cadmium (dissolved):

The long-term guideline for cadmium is determined on a site-specific basis according to the local water hardness. The guideline for total cadmium in $\mu g/L$ is determined as follows for long-term exposure:

1. If hardness (as CaCO3) is less than 17 mg/L then maximum is 0.04 μ g/L

2. If hardness (as CaCO3) is from 17 to 280 mg/L then maximum is based on equation:

10 raised to the power of {0.83[log(hardness)] - 2.46}

3. If hardness (as CaCO3) is greater than 280 mg/L then maximum is 0.37 μ g/L.

Note 1.22 for Chromium (dissolved):

CCME guideline for freshwater aquatic life is 0.0010 mg/L for chromium VI. CCME interim guideline for freshwater aquatic life is 0.0089 mg/L for chromium III. The guideline of 0.0010 mg/L was used, in this report, to identify exceedances for dissolved chromium, and total chromium as a means for determining the potential for exceeding the chromium VI and/or chromium III guidelines.

Note 1.23 for Copper (dissolved):

The guideline for copper in μ g/L is determined as follows:

When the water hardness is 0 to < 82 mg/L, the CWQG is 2 μ g/L

At hardness ≥82 to ≤180 mg/L the CWQG is calculated using the equation:

e raised to the power of {0.8545[ln(hardness)]-1.465} * 0.2 $\mu\text{g/L}$

At hardness >180 mg/L, the CWQG is 4 $\mu\text{g/L}$

Where water hardness is reported as mg/L CaCO3.

If the water hardness is unknown, the CWQG is 2 μ g/L

Note 1.24 for Lead (dissolved):

The guideline for lead in μ g/L is determined as follows:

When the hardness is 0 to \leq 60 mg/L, the CWQG is 1 µg/L

At hardness > 60 to \leq 180 mg/L the CWQG is calculated using the equation:

e raised to the power of {1.273[ln(hardness)] - 4.705}

At hardness >180 mg/L, the CWQG is 7 μ g/L

Where water hardness is reported as mg/L CaCO3.

If the water hardness is unknown, the CWQG is 1 µg/L

Note 1.25 for Manganese (dissolved):

The guideline for dissolved manganese varies as a function of pH and hardness (as CaCO3). The lookup table is based on results for Hardness, Total (dissolved as CaCO3). / (CCME Update 2019)

Note 1.26 for Nickel (dissolved):

The guideline for nickel in μ g/L is determined as follows:

When the water hardness is 0 to \leq 60 mg/L, the CWQG is 25 µg/L

At hardness > 60 to \leq 180 mg/L the CWQG is calculated using the equation:

e raised to the power of {0.76[ln(hardness)] + 1.06}

At hardness >180 mg/L, the CWQG is 150 µg/L

Where water hardness is reported as mg/L CaCO3.

If the water hardness is unknown, the \widetilde{CWQG} is 25 μ g/L

Note 1.27 for Phosphorus (dissolved, by ICPMS/ICPOES):

Canadian Guidance Framework for Phosphorus is for developing phosphorus guidelines (does not provide guidance on other freshwater nutrients). It provides Trigger Ranges for Total Phosphorus (see Guidance Framework for Phosphorus factsheet):

ultra-oligotrophic <4 μg/L; oligotrophic 4-10 μg/L; mesotrophic 10-20 μg/L; meso-eutrophic 20-35 μg/L; eutrophic 35-100 μg/L;

hyper-eutrophic >100 µg/L,

Note 1.28 for Uranium (dissolved):

The Short-Term Exposure Guideline is 33 µg/L. The Long-Term Exposure Guideline is 15 µg/L. The guidelines are for total recoverable, unfiltered analyses.

Note 1.29 for Zinc (dissolved):

The long-term CWQG is for dissolved zinc (μ g/L) and is calculated using the following equation: CWQG = exp(0.947[In(hardness mg·L-1)] - 0.815[pH]

+ 0.398[In(DOC mg·L-1)] + 4.625). The CWQG equation is valid between hardness 23.4 and 399 mg CaCO3·L-1, pH 6.5 and 8.13 and DOC 0.3 to 22.9 mg·L-1.

The guideline value of 1.7 μ g/L in this criteria set is based on assumed water quality of 23.4 mg CaCO3·L-1 hardness, pH of 8.13 and 0.3 mg·L-1 DOC, which are the limits for the equation that provide the most stringent guideline value. (CCME Update 2018)

2. Notes for CCME. Canadian water quality guidelines for the protection of freshwater aquatic life, Short-Term Exposure guidelines. (CCME AL (ST))

General Notes:

The CCME Canadian water quality guidelines for the protection of freshwater aquatic life provide both a Long-Term Exposure guideline, and Short-Term Exposure guideline for some analytes. Only the Short-Term Exposure guidelines are included in this criteria set.

Note 2.1 for Nitrate (as N):

The guidelines for nitrate are for protection from direct toxic effects; the guidelines do not consider indirect effects due to eutrophication.

The Short Term guideline is derived from toxicity tests utilizing NaNO3. The Short Term guideline is derived with severe-effects data (such as lethality) and are not intended to protect all components of aquatic ecosystem structure and function but rather to protect most species against lethality during severe but transient events (e.g. inappropriate application or disposal of the substance of concern).

Note 2.2 for Cadmium (total):

The short-term benchmark for cadmium is determined on a site-specific basis according to the local water hardness. The benchmark for total cadmium in µg/L is determined as follows for short-term exposure:

1. If hardness (as CaCO3) is less than 5.3 mg/L then maximum $% 10^{-1}$ is 0.11 $\mu g/L$

2. If hardness (as CaCO3) is from 5.3 to 360 mg/L then maximum is based on equation:

10 raised to the power of {1.016[log(hardness)] - 1.71}

3. If hardness (as CaCO3) is greater than 360 mg/L then maximum is 7.7 $\mu\text{g/L}.$

Note 2.3 for Manganese (total):

The short-term benchmark for dissolved manganese in $\mu g/L$ is calculated using the equation: e raised to the power of { 0.878[ln(hardness)] + 4.76 } Where water hardness is reported as mg/L CaCO3.

The benchmark equation is valid between hardness 25 and 250 mg/L.

When the hardness is 0 to < 25 mg/L, the benchmark is 1,970 μ g/L.

At hardness >250 mg/L, the benchmark is 14,882 μ g/L.

The guideline for dissolved manganese was used to identify exceedances for total manganese as a means for determining the potential for exceeding the guideline for dissolved manganese.

Note 2.4 for Uranium (total):

The guideline is for total recoverable, unfiltered analyses.

Note 2.5 for Zinc (total):

The guideline does not apply to total zinc. The short-term benchmark equation for dissolved zinc was used to identify exceedances for total zinc, as a means for determining the potential for exceeding the guideline for dissolved zinc. Where guideline users have only water sample concentrations expressed as total zinc, CCME recommends first comparing these samples to the dissolved guideline. Should an exceedance occur, re-sample for a dissolved concentration for direct comparison to the guideline.

The short-term benchmark is for dissolved zinc (μ g/L) and is calculated using the following equation: Short-term benchmark= exp(0.833[ln(hardness (as CaCO3) mg/L)] + 0.240[ln(DOC mg/L)] + 0.526).

The short-term benchmark equation is valid between hardness (as CaCO3) 13.8 and 250.5 mg/L and from DOC 0.3 to 17.3 mg/L. If results are outside these equation limits, then the value of the closest equation limit is used in the formula calculation.

Note 2.6 for Cadmium (dissolved):

The short-term benchmark for cadmium is determined on a site-specific basis according to the local water hardness. The benchmark for total cadmium in µg/L is determined as follows for short-term exposure:

1. If hardness (as CaCO3) is less than 5.3 mg/L then maximum $\,$ is 0.11 $\mu g/L$

2. If hardness (as CaCO3) is from 5.3 to 360 mg/L then maximum is based on equation:

10 raised to the power of {1.016[log(hardness)] - 1.71}

3. If hardness (as CaCO3) is greater than 360 mg/L then maximum is 7.7 $\mu\text{g/L}.$

Note 2.7 for Manganese (dissolved):

The short-term benchmark for dissolved manganese in μ g/L is calculated using the equation: e raised to the power of { 0.878[ln(hardness)] + 4.76 } Where water hardness is reported as mg/L CaCO3.

The benchmark equation is valid between hardness 25 and 250 mg/L.

When the hardness is 0 to < 25 mg/L, the benchmark is 1,970 μ g/L.

At hardness >250 mg/L, the benchmark is 14,882 μ g/L.

Note 2.8 for Uranium (dissolved):

The guideline is for total recoverable, unfiltered analyses.

Note 2.9 for Zinc (dissolved):

The short-term benchmark is for dissolved zinc (μ g/L) and is calculated using the following equation: Short-term benchmark= exp(0.833[In(hardness (as CaCO3) mg/L)] + 0.240[In(DOC mg/L)] + 0.526).

The short-term benchmark equation is valid between hardness (as CaCO3) 13.8 and 250.5 mg/L and from DOC 0.3 to 17.3 mg/L. If results are outside these equation limits, then the value of the closest equation limit is used in the formula calculation.

APPENDIX C

CONCEPT PLAN FOR POLYTECHNIC UNIVERSITY

YELLOWKNIFE NORTH SLAVE CAMPUS

7. Yellowknife North Slave Campus

7.1. Master Planning Vision

In this location, where there are no College-owned facilities as a foundation for the polytechnic university, the development of a new campus offers a blank slate for establishing and embodying the values of the transformed institution. This campus offers an opportunity to realize, and also actualize, a vision for an educational community environment, specific to the unique context of the NWT.

The Yellowknife North Slave Campus will welcome students, staff and researchers from across the territory and from elsewhere. The campus is envisioned as a vibrant, supportive community, built with a dual focus on student safety and an inspiring learning environment. Its grounds and facilities will be designed to celebrate Indigenous ways of being, knowing and doing. The campus environment will be integrated with the natural landscape, supportive of land-based learning, and centred around cultural safety and diversified supports.

The campus grounds will be a defining feature, populated by outdoor learning and gathering spaces, and animated by community use. The Yellowknife North Slave campus will benefit from access to the nearby city amenities and services, while being grounded in the quiet expanse of the surrounding natural environment, bridging both.

Welcoming and supportive to students from remote Northern communities and from elsewhere, this campus environment will be designed to bring people together and to excite possibilities, while celebrating the character of the sub-arctic landscape, waters and skies.

7.2. Existing Facilities

Aurora College does not currently own facilities in Yellowknife. Academic functions and student residences are accommodated in a series of leased buildings, at the edges of downtown Yellowknife and near the territorial hospital.

The largest space being used by the College is inside the mixed-use and multi-tenant building called Northern United Place (NUP). The lower three floors of NUP's southeast wing were renovated in 2002 to accommodate administrative and academic functions for Aurora College. The annex side of the building has since been renovated to house additional offices, a nursing simulator and nursing lab. By 2006, these spaces were assessed as inadequate for the uses of the institution.

On the eighth and eleventh floors of the same building, one-bedroom and two-bedroom units are leased for student housing. Regarding this arrangement, issues cited by staff at the Yellowknife North Slave campus include a lack of control by the College over building maintenance, quality, security and regulations.

The ground floor of the Tallah Building (roughly 1km east of NUP) is also leased and primarily accommodates the Early Childhood Education program. This space has similarly been described by key stakeholders as deficient for its current use in terms of both size and layout. Additional space has been leased for offices, classrooms and a multi-functional lab on the 11th floor of the Precambrian Building, beginning in 2022.

Near Stanton Territorial Hospital, the College leases residential units in the multi-family buildings known as Beck Court and Stanton Suites. This housing is intended specifically for students in the Nursing program, who participate in work placements at the hospital. The close proximity of these units to the hospital is convenient for upper-year nursing students. The institution could consider retaining these leases as part of the polytechnic university's

housing portfolio, in the short-term or interim phases before the full requirements for new student housing are constructed.

Aside from housing dedicated to the Nursing program, the remainder of the College's leased space has been assessed as inadequately sized and unsuitable. Leased spaces are to be replaced with a purpose-built campus that meets the standards of a polytechnic university, and embodies the principles and vision outlined for the institution.

Facility	Size	Year built	Ownership	Adequacy
Academic and trades	Area (m ²)			
Northern United Place	2,468	1976	Lease	Inadequate size and unsuitable layout for current
Tallah Building	318		Lease	and future programming
Precambrian Building			Lease	To be leased in 2023
Residential	# beds			
Northern United Place	51	1976	Lease	Inadequate number of beds
Beck Court	8		Lease	Suites are adequate but
Stanton Suites	32		Lease	distant from the campus.

Table 4. Existing facilities at Yellowknife North Slave Campus

7.3. Space Requirements for a New Campus

With the academic facility at the new Yellowknife North Slave campus, a new building typology is being proposed – one without a precedent in the NWT.

Teaching, learning and research activities at the polytechnic university will be supported by a different ratio of spaces than the educational facilities that currently exist in the territory. An emphasis is to be placed on specialized research laboratories, faculty offices and additional spaces that support the student experience, as opposed to an emphasis on standard classroom spaces. Expanded academic spaces, as listed in Table 5, are required as part of a shift to supporting the academic freedom of researchers and faculty, which is a key criteria for meeting the standards of accreditation as a university. Further to this, additional programming is to be accommodated for student services and supports (see Table 6).

The space allocation recommendations in this report assume an increase to 175% of current full-time students at this campus, and are currently based on non-specific programming. To refine the proposed approach for this campus and define a functional program, the next step will be to finalize the academic programming. From here, the allocated space can be worked into a more specific and specialized set of functions that correspond to the programs offered at this campus.

For the full description of space allocation guidelines and formulas, see the polytechnic university's capital space standards and guidelines. Summary tables are included on the following page.

Table 5. Space allocation summary

Building program	Area (m²) (est.)
Academic and student support	
Academic and research facilities	10,939
Student services centre	4,017
Residential	
Single student housing	2,616
Family student housing	14,121
Staff and faculty housing	411

Table 6. Overview of space allocation within academic facilities

Program category and description	Area (m2)	% of total bldg
Administrative functions	522	4.8%
Includes: Executive offices; Campus Director and supporting team offices; Reception, waiting rooms; Meeting rooms; Storage		
Faculty spaces	1,413	12.9%
Includes: Department chair office; Faculty offices; Reception; Meeting rooms; Storage and support space		
Laboratory and research spaces	1,641	15.0%
Spaces will be program-dependent. May include: Wet labs – with equipment storage, cold rooms, chemical storage; Dry labs – with secure procedural library, collection storage; Additional specialized spaces; Supporting offices		
Lecture halls and classrooms	2,267	20.7%
Includes: Large lecture hall / auditorium space; Assortment of large, medium, small classrooms; Computer labs; Conference rooms; Study rooms (medium, small, and individual)		
Library	1,207	11.0%
Includes: Library stacks, study carrels, computer stations; Display area; Reception, circulation; Meeting rooms and study rooms; Library administration offices; Storage		
General	3,888	35.5%
Includes: Circulation; Building systems; General storage; Washrooms; Interior partitions; Building structure		
Total	10,939	100.0%

Table 7. Overview of space allocation w	within student services centre
---	--------------------------------

Program category and description	Area (m2)	% of bldg
Student commons	1,264	31.5%
Includes: Large gathering space; Kitchen; Canteen; Retail space (campus book store); Workshops/activities/events space; Exercise room/gym and changerooms; Storage; Loading dock		
Daycare	962	23.9%
Includes: Play area; Nap space; Office; Kitchen; Meeting/private room; Storage		
Student wellness supports	108	2.7%
Includes: Flexible counseling space; Reception; Private waiting area; Storage		
Health centre	258	6.4%
Includes: Practitioner's office; Examination/consultation rooms; Reception; Private waiting area; Storage		
General	1,425	35.5%
Includes: Circulation; Building systems; General storage; Washrooms; Interior partitions; Building structure		
Total	4,017	100%

Residential facility requirements for the Yellowknife North Slave Campus

Housing is a serious need at all three campuses. In Yellowknife, however, it is assumed that some students will be able to find accommodations within the larger housing market – more so than in Fort Smith and Inuvik. The existing NWT College Facilities Capital Standards and Criteria (2007) suggests that housing should be provided for 57% of enrolled students in Yellowknife, as opposed to approximately 95% in the other two campus communities.

The Facilities Master Plan brings forward the same assumption for Yellowknife. On-campus housing is proposed to accommodate 57% of the targeted enrolment numbers at this campus, understanding that approximately a third of the student body should be able to secure off-campus housing. Of the students accessing on-campus housing, 60% are assumed to have family members with them, based on current trends.

Following from these assumptions, student residences are proposed to accommodate 89 single student bedrooms and 134 family housing units. In addition, nine units are proposed as short-term accommodations for staff, faculty, and visiting researchers. Due to the high volume of new units being proposed, the construction of housing will occur in phases. 40% of total required student housing is proposed to be built in the first, immediate, phase of work.

Student housing is to be built on the campus site. This approach supports the vision for the polytechnic university by fostering an engaging student experience and a sense of community, while ensuring that students have ready access to services and supports provided by the institution.

7.4. Site Selection Criteria for a New Campus in Yellowknife

Key criteria for the campus site were established through targeted early engagement sessions, in combination with precedent studies and background research. Three minimum requirements for the site, based on this process, are summarized below.

A natural setting with access to the land

Yellowknife North Slave Campus should have a natural character and be equipped with ready access to the land. Reasons for this include the following:

- The student population at Aurora College, and likely at the new polytechnic university, is majority Indigenous. The campus should be designed to support and celebrate Indigenous ways of being, knowing and doing. Connection to the land is of paramount importance.
- To offer an experience of cultural safety, access should be provided to outdoor gathering areas, ceremonial spaces and outdoor work spaces. These places should be grounded within a natural setting.
- On-the-land educational programming has been cited as a key opportunity and interest by stakeholders. The campus should be equipped to support land-based learning.
- The campus should feel welcoming, safe and supportive to residents from smaller NWT communities who might travel to Yellowknife for post-secondary education. For these students, a quiet, compact community environment, set inside the landscape, would offer a comfortable and familiar setting.
- As the polytechnic university grows, it will support students and faculty from outside of the territory. A striking educational environment, responsive to the natural beauty of the NWT, will help attract students and staff to the institution. This, in turn, will establish the critical mass required to offer an engaging and high-quality post-secondary experience for Northerners.

Enough space to get established and then to expand

Including academic and research facilities, a student services centre and housing, the shortterm vision for the campus requires a total building area of approximately 32,500 m². To create an experience that responds to the natural setting (as outlined above), these facilities are envisioned to be no more than 2-3 storeys in height. Accordingly, the buildings would occupy a total footprint between 11,000 and 16,000 m². This area accounts only for the footprints of facilities; parking, outdoor learning space and outdoor circulation space is additional. The campus also requires space for future expansion in coming decades as student enrolment increases. Ideally this expansion will take place on the same site; room to grow needs to be planned.

Based on the approximate numbers above, a suitable site is recommended to be an absolute minimum of 22,000 m², and preferably larger.

Ready for development

The new campus is intended to be in development within three years. A suitable site for the campus must be ready and available for development by 2025.

7.5. Site Selection Methodology + Findings

Subject matter experts looked at how campuses across Canada and around the world are chosen and developed. They also heard through engagement about what elements were most important when looking at the best location for the future campus Three potential scenarios were considered for the desired typology of the campus setting and its relationship to the community of Yellowknife. These three scenarios are:

- **Central + Integrated** This campus is embedded in the central core of a larger community, with buildings dispersed throughout the city
- **Central + Distinct** Centrally-located to the larger community, but comparatively

self-contained, with a sense of being distinct from the city

• **Peripheral + Distinct** — Located on the periphery of the community, and distinct from the city

Each model has different characteristics that shape the utility, learning experience and potential for growth. There are common campus design considerations among institutions in Canada that are reflected in the site selection considerations for the new Yellowknife campus. These considerations are reflected in Figure 8.

A review of Yellowknife and surrounding land identified sites that met the technical requirements of a new campus, and these sites were organized under each campus model as seen in the Table 8.1 and 8.2.

Figure 8				
Considerations	Central Integrated	Central Distinct	Peripheral Distinct	
Flexibility to accomodate and manage growth	0	0	•	
Critical mass to support complete campus	•	0	0	
Ability to establish campus identity	0	•	•	
Presence of hard infrastructure	•	•	(?)	
Accessible by public transit	•	0	0	
Options for parking	•	•	•	
Proximity to existing and future housing	•	•	?	Strongth
Proximity to community amenities	?	•	0	 Strength Sufficient
Proximity to potential academic partners	?	(?)		Weakness
Potential for local economic impact	•	•	0	Unknown

Upon further review, central integrated sites provided only the minimal space and would present many of the same challenges to growth experienced by the current Yellowknife campus. Peripheral distinct sites were deemed to have potential, but an initial review suggested they would be more costly and would not draw students or provide a genuine university experience relative to the other two models.Central distinct sites were shown to balance land availability with the potential for an attractive and fully functional campus that can grow incrementally. This was determined to be the most appropriate approach.

The next step was to examine the sites associated with that model and work through the potential of each site. Sites included:

- Old Airport Road/Frame Lake: This site was taken out of consideration because the availability of land in the area is limited by an interim land withdraw.
- Niven Phase III: This site was taken out of consideration by the land owner(s).
- **Con Mine:** This site was taken out of consideration due to potential environmental liabilities and timing of availability.
- Taylor Road South: This site was taken out of consideration due to location. It is surrounded by old tailings ponds from Con Mine that significantly limit the potential for establishing a campus.

Figure 8.1 (see 8.2 for mapping of locations)

Central Inegrated Site Options: Site 1. City Geteway/Visitors Centre Site 2. Block 38 (51st and 50th Ave) Site 3. Akaitcho Hall

Cental Distinct Site Options: Site 4. Tin Can Hill Site 5. Con Mine Site 6. Taylor Road South Site 7. Niven Phase III Site 8: Old Airport Road/Frame Lake

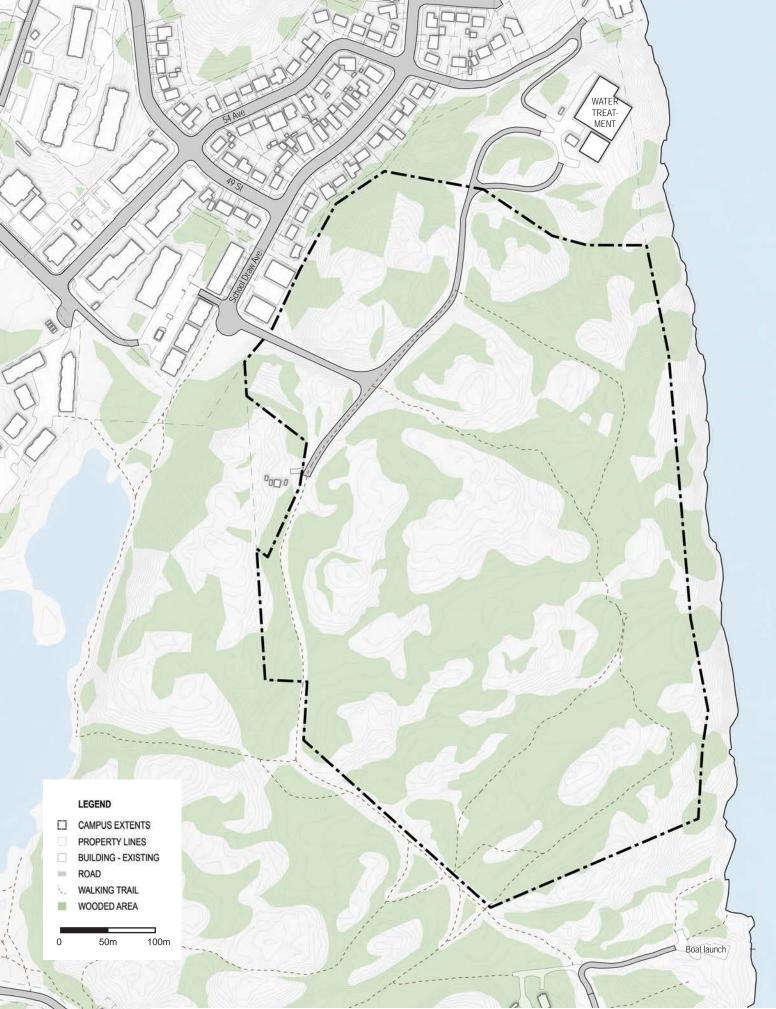

Peripheral Distinct Site Options: Site 9: Airport Area Site 10: by Giant Mine Site 11: Former Treatment Plant

Figure 8.2

- Tin Can Hill: This site was reviewed multiple times and considered in the context of technical requirement, design limitations and opportunities for future expansion. Based on these considerations, it was identified as the most optimal. The significant benefits to this site include:
- **Size:** This property is large enough to accommodate all required campus facilities, campus grounds, and an expansion of the campus facilities in future, while also establishing and maintaining a sizable natural preserve on site.
- **Character:** Tin Can Hill is an undeveloped site exemplifying the rocky, treed landscape of the subarctic Canadian Shield, and occupies a wide waterfront with unencumbered views and direct access to Great Slave Lake. There is a great opportunity to develop a striking and unique campus identity here, one that communicates intimately with the landscape of the North Slave Region. The site creates a feeling of being embedded in nature, and even being remote to the city making it an ideal locale for establishing a peaceful and secure environment.
- Location: The downtown core of Yellowknife is a ten-minute walk from Tin Can Hill. Services and amenities such as grocery stores, restaurants, retail, banks, and government services are all within walking distance from the site. In addition, an existing transit line runs down School Draw Avenue (directly adjacent to the site) and could be extended to the new campus. Through engagements, we have heard that students from across the NWT should feel at home at the polytechnic university, and that access to services and amenities for themselves and their families is important. For students with families, there are two high schools and three elementary schools within a 1.5km radius.
- **Current Use/Ownership:** The site is currently owned by the City of Yellowknife and is primarily used as a recreational site by dog-walkers and skiers. This use can be maintained and potentially enhanced on the natural preserve that is intended to occupy a large portion of the new campus grounds.

The existing conditions of the site are shown in Figure 10.

Figure 10. Existing Site Conditions

7.6. Guiding Principles and Opportunities

The following key principles have been applied specifically to the site planning approach for the new Yellowknife North Slave Campus.

Safety: Safety on campus incorporates a wide spectrum of issues; these may include barrier free accessibility, vehicular/traffic safety and personal safety concerns. In a practical sense, several steps can be taken at the campus planning stage to lay the groundwork for a safe campus:

- Separate vehicular traffic from pedestrian circulation. Parking should be removed from building entrances and buffered from the pedestrian-friendly core of the campus
- Ensure openness, transparency and lines of sight are afforded both within buildings and throughout the outdoor site planning
- Gradual elevation changes across circulation routes are preferable
- Ensure vehicular access to buildings for emergency vehicles and servicing

Northern and Indigenous Experiences: There is a wide diversity of Northern and Indigenous experiences and cultures across the NWT. Common among these experiences is the importance of being connected to the land. This principle can be supported by integrating campus buildings with the surrounding environment, creating direct access to the land, and establishing space for land-based activities and gathering spaces.

- Integrate the built environment with the natural landscape
- Create access to an on-the-land experience
- Designate appropriate spaces for outdoor gathering spaces and land-based activities
- Foster a sense of community, and an identity for the campus where Northern students will feel comfortable, empowered and at ease

Preservation and enhancement of the natural setting: The existing natural environment should remain, and be enhanced, as an integral part of the campus development.

- Where possible, leverage visual and physical access to the waterfront
- Minimize the development footprint e.g. leaving bedrock and forest preserved and traversed by footpaths, rather than blasting and paving large portions
- Design elements of the campus (buildings, parking, pathways) to respond cohesively to the natural site contours, materiality, climate, and features specific to the site.

Economical site development: With the development of a large new site, a balance should be considered. The up-front cost for the first phase of site development should be minimized. At the same time, the groundwork should be laid for future expansion in a way that allows new facilities to build sensibly on the initially-established infrastructure.

- Consider both short-term and long-term sustainability in the initial development plan
- Be frugal with proposed placement of roads, and with all blasting, grading, and paving
- Encourage synergies with other institutions and with nearby amenities as applicable.

Preservation of flexible opportunities for long-term growth: A significant section of the site should be protected for long-term expansion in a way that serves the future needs of the institution.

- Designate a protected area for long-term expansion
- Establish a framework with intentionality about the location of parking areas, access points and key connections
- Outline and protect the opportune areas for future development sites, while maintaining flexibility of each site to accommodate various development types

7.7. Development Framework

Guidelines for development on Tin Can Hill

Following from the planning principles for the new campus, and an assessment of the site conditions, character and opportunities presented, the following set of parameters are intended to guide the development of campus infrastructure on Tin Can Hill:

• Respect the site topography:

- » Building sites follow the lines of the land rather than manufacturing a new development pattern
- » Development of hard infrastructure is minimized: all facilities hinge off a single, simple vehicular circulation route – which builds on the existing road through the site

• Maintain a natural, treed horizon:

- » Where facing the waterfront, buildings are nestled into the low points in the landscape rather than dominating the skyline
- » A wide buffer is maintained between the new residential developments and the existing neighbourhood on School Draw Avenue

• Celebrate the experience of the land and water:

- » Green space is preserved between every development parcel to maintain sense of being on (or close to) the land
- » Existing vegetation, where possible, is maintained
- » Views over the waterfront are afforded to developments that face the site's eastern edge
- Create vibrant outdoor spaces through a pedestrian-focused approach:
 - » Parking is maintained at some distance from the main academic buildings, encouraging an approach to facilities on foot
 - » Landscaped grounds are established as a central defining element of the campus
 - » Existing walking trails through the site are maintained, and remain accessible to the public
- Distinct experience between public, semi-public and private:
 - » Academic developments are accessed primarily on foot and face the waterfront
 - » Residences are clustered into neighbourhoods and buffered (by forested space) from the academic area, and from city streets
 - » Residential and academic sites are afforded separate access points and parking

Defining each component of the campus

Figure 11 illustrates an approach to the location, orientation and key access points for each main component of the campus.

• Academic development sites reach from the main access road towards the waterfront, stepping down the low areas in the natural topography. These sites are accessible by a

service loop, but the main approach is on foot.

- **Parking areas for academic functions** are maintained at a distance from the academic facilities. Main parking for the academic campus is located at the west edge of the site. A key pedestrian path is established between this parking lot and the phase 1 academic facility.
- Equipment storage / light industrial sites are provided in two locations, both of which are discrete (less visible from the water or from the main access road) but accessible by vehicular routes.
- **Residential development sites** in the framework diagram include private parking areas for the student residences. These development sites are accessible from the main road, while distinct from the more public academic areas. Residences are envisioned to take the form of small-scale buildings clustered together in neighbourhoods.
- **Natural preserve** sites are intended to be preserved in its natural state, unless outlined as one of the above development areas. These areas are preserved because:
 - A) Some of the land is intended to be used for a variety of land-based programming, not requiring hard infrastructure.
 - B) A natural buffer of treed landscape is to be maintained between each built component. For example, between the existing houses on School Draw Ave and the buildings on Tin Can Hill; between the new residential developments and the new academic developments; and between the two main academic facility sites.
 - C) Some areas are impractical for development, due either to steep/uneven topography, or to distance/inaccessibility from servicing infrastructure.

• "Maintained as is": area for long-term expansion:

The southern half of the site is to be protected by the institution until the polytechnic university grows beyond the maximum capacity of the outlined development areas. In its current state, this recreation site is an important community space and is wellused by the public. Preserving the area, with the existing walking trails intact, will facilitate community access to and interaction with the campus grounds, while at the same time, maintaining a distinct separation from private and semi-public areas on site.

This massive natural preserve is an important component of the campus in its first phases of establishment. The natural site increases the attractiveness of the campus to students and staff, offers access to land, and can facilitate a sympathetic relationship between the campus grounds and city residents.

To the greatest extent possible, trails will be maintained or expanded to preserve

accessibility by the broader community.

LEGEND

- CAMPUS EXTENTS
- BUILDING EXISTING
- ROAD or PARKING
- NATURAL PRESERVE
- RESIDENTIAL DEVELOPMENT AREA
- ACADEMIC / STUDENT SERVICES DEVELOPMENT AREA
- LIGHT INDUSTRIAL / STORAGE
- MAINTAINED AS IS / LONGTERM EXPANSION

100m

773

0000

0

- KEY VEHICULAR CIRCULATION
- KEY PEDESTRIAN CICULATION
- WALKING TRAIL EXISTING
- PROPERTY LINES
- WOODED AREA

0 50m

WATER TREAT-MENT

7.8. Campus Development Scenarios

Figures 12 to 14 illustrate a phased series of development scenarios for the Yellowknife North Slave Campus. The building areas shown on these plans correspond to the space requirements detailed in Section 8.3 and attached appendices.

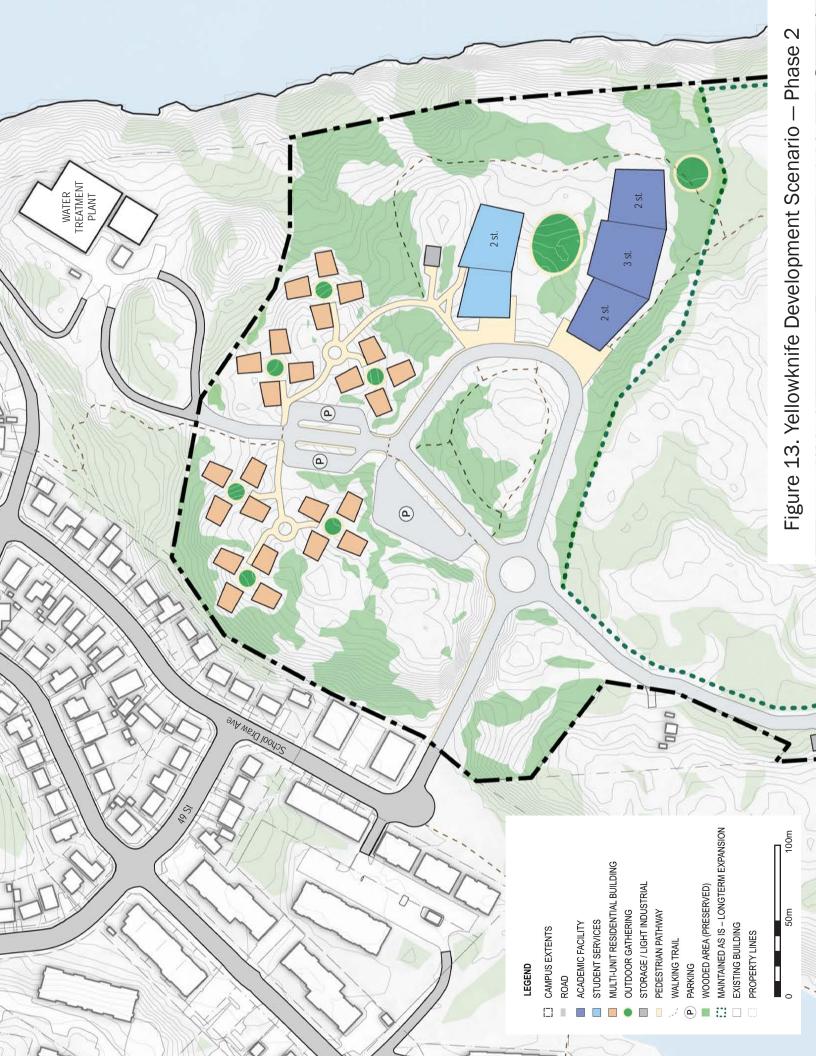
The academic and research functions are housed in a single facility, set within a low point in the site topography, with prominent views toward Great Slave Lake. Ancillary buildings for academic functions include a storage shed to support land-based programming and a vehicle maintenance garage situated on the main access road.

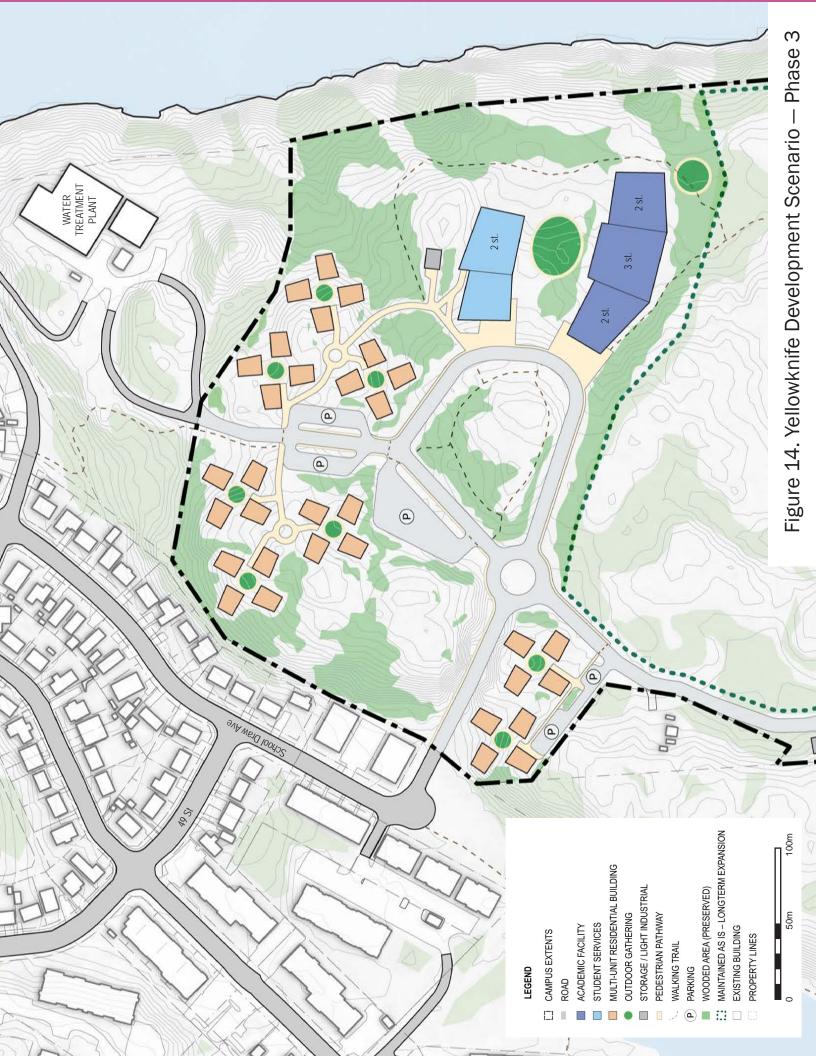
Just north of the academic building is the student services centre, which is proposed to be built in two phases. Phase 2 assumes an expansion of the daycare function and of the student commons, as enrolment increases. Future needs assessments should also be undertaken to confirm the programming requirements for any facility expansions.

The academic and student services building share a large central courtyard which overlooks the water and ties into the existing public trail system. Green roofs on these buildings will lend them a natural and humble presence when viewed from the lake.

Phase 1 student residences are near the student services centre, though separated by a forested area. The student housing is conceived of as a series of small-scale multi-unit residential buildings, each sharing a neighbourhood courtyard. The intent is to cultivate a natural (rather than urban) setting, and offer a comfortable home environment for students from smaller communities. Residential facilities would be two or three storeys in height, depending on the topography: if occupying a low point, the building could be taller, without imposing on the site or its surroundings. During the design phases for these facilities, care should be taken to ensure the buildings are oriented to capture sunlight and shelter the courtyards from prevailing winds.

The Phase 1 plan shows 40% of student housing requirements, with another 40% built in Phase 2 and the remainder as Phase 3. These phases might be combined, further broken down or may be further considered as student enrolment increases. Each cluster of residences is provided a private parking lot. Parking is adjacent to the main access road rather than adjacent to each building to minimize the presence of roads or paving on site.


All buildings on campus are connected by a network of pathways. These are intended primarily for pedestrian usage, but should be wide enough to accommodate a service vehicle as required. This network will take the form of boardwalk-style pathways, which may be concrete, rather than asphalt. On the southern portion of the site, the existing public trail system is unimpacted, but could be expanded pending further community engagement.


Energy Systems Recommendations

The area calculations in Appendix C assume that each building will be served by its own heating plant. However, the potential exists to establish a district energy system for the campus. This approach would consolidate maintenance and space requirements to a single heating plant, would create opportunities for the campus to be heated with renewable energy, and would make the campus future-flexible, capable of changing over to new renewable and efficient heating options as they become available.

Initially, a district heating plant could be fueled with a biomass (wood-pellet) combustion boiler, which is the most common and cost-effective renewable heating system in Yellowknife.

A standard biomass combustion heating system would also accomplish a reduction in carbon footprint compared to conventional systems, reduce dependence on fossil fuels, and create operational cost savings compared to conventional oil and gas heating systems.

The heating load anticipated for the new campus could also be well suited to newer energy technologies, such as a Pyrolysis Carbon Capture and Storage (PyCCS) heating system. PyCCS heating has a carbon negative effect as it takes biomass fuel such as wood pellets or chips, and converts them to heat and to bio-char, which is a carbon capturing solid byproduct that can be used as a soil amendment in agriculture, mine remediation or other industrial uses. Planning for a carbon neutral option for heating, using available technology such as PyCCS, would make the campus demonstration project for renewable energy technology, thereby attracting further academic and research interests from within and outside of the territory.

It is recommended that a district energy system, with a central heating plant of biomass combustion boilers or PyCCS boilers, be included in the next phase of campus planning. A district energy system will centralize and consolidate maintenance, provide a single point backup and redundancy of heating systems, and offer the added benefit of being easily upgraded to accommodate future advances in heating technologies. Given the scale of this development and the energy prices in Yellowknife, an investment in cost-efficient renewable energy systems is likely to deliver a significant return in the coming decades.

7.9. Potential Co-location Partners in Yellowknife

At the outset of the facilities master planning process, specific potential co-location partners were identified. They were engaged as part of the planning process. Additional work is needed to solidify co-location plans, including funding arrangements. The space requirements for these partners have not been included in the space estimates in the FMP. The current understanding of their projected needs is summarized below.

Collège Nordique Francophone

Collège Nordique Francophone is an educational institution offering language courses, postsecondary education, professional development, and community workshops in French. The institution is interested in co-location with the polytechnic university. International students are a growth market, and the institution hopes to grow to have 50-100 full-time students over the next 20 years. To enable this growth, access to student housing for international students is a priority, with 10 units as a desired start. These students may also require access to daycare.

With their current student population, it may be possible to share teaching spaces with the polytechnic university, as many of their courses are offered outside of standard business hours. There is also interest in leveraging specialised teaching spaces, such as lab spaces for nursing and early childhood education. Collège Nordique is offering college level Early Childhood Education program through Collège La Cité this fall, and sees growth in Business Administration and Communications programs. Co-location would require that signage and wayfinding markers on campus reflect a linguistic duality or plurality within the specific context of the NWT's official languages. It may be that some common areas and student services areas, when shared, would also need to be mindful of this dynamic. Furthermore, spaces for Collège Nordique would need to be grouped to foster a Francophone space within the campus where most activities could be conducted in French (offices, student common room and teaching spaces) while also respecting any eventual bilingual or multi-lingual conventions.

At this point, Collège Nordique does not expect to have a presence in the polytechnic

university outside of the Yellowknife campus. They have had limited virtual students from Inuvik and Fort Smith.

Dechinta Centre for Research and Learning

Dechinta Centre for Research and Learning (Dechinta) is an Indigenous-led fully land-based educational centre. Dechinta's priorities are maintaining autonomy and self-determination. There is opportunity in collocating with the polytechnic university. Dechinta is currently offering programming in different areas of the NWT and would have a presence at the campuses and some community learning centres.

In Yellowknife, Dechinta currently requires an office with breakout spaces, co-working space for 10 staff, a six-car garage, two sea cans, and five parking stalls for trailers and snowmobiles. Both heated and cold storage is needed. With a purpose-built space, it is a priority for it to be reliable and accessible. Programming would utilize both accessible outdoor space on campus, and access to the water and snowmobile trails for land-based programs off-campus. Students would benefit from access to dorm-style student housing and shower facilities before and after their land-based programs – estimated at 20 beds.

In NWT's smaller communities, there is also the opportunity for Dechinta to use the community learning centres as a starting point for land-based programs. There is a need for internet access, space to host gatherings, and flexible teaching and office space. Currently, Dechinta's programming is growing in the Beaufort Delta with a presence in Aklavik, Tuktoyaktuk and Inuvik. Of note, programming shifts based on community champions and opportunities, so it is expected that regional programming will shift over time. Dechinta also has interest from visiting researchers.

Wilfrid Laurier University

Wilfrid Laurier University (Laurier) currently has 74 active projects across 48 research sites in the NWT. Laurier has an office in Yellowknife that has permanent staff and hosts visiting researchers. Laurier also leases space across the territory depending on specific project needs. Co-location with the polytechnic university is an interest. For the Yellowknife campus, the needs are office space, open workspace, access to lab space and a variety of storage for a range of needs from vehicles to water samples. There is an opportunity to build relationships in NWT communities between Laurier and the CLCs.

Taiga Labs

Taiga Environmental Laboratory is a government-run full-service analytical laboratory that performs a wide range of organic and inorganic chemical analyses on water. There is the opportunity to potentially collocate with the polytechnic university at the Yellowknife campus and provide opportunities for students to have placements in the lab. Taiga Labs has exceeded its current capacity in all areas including lab space, office space and storage. There are specific facilities considerations for Taiga Labs. It requires dedicated lab space and a dedicated entrance for clients to drop-off samples.

7.10. Other Partnership Opportunities

An interest has been identified to create opportunities to support local entrepreneurship and connect with existing infrastructure. There are many potential partners that would fit this category across the territory. Additional partnerships will continue to be explored and will be established between Aurora College and NWT communities.

7.11. Cost Estimates for Priority Developments

These cost estimates have been generated based on the area calculations attached as Appendix C. Assumptions and limitations on the cost estimates as well as detailed construction cost estimates for each involvement are also attached. Project costs have been calculated by adding 25% for soft costs onto the construction estimate.

Priority	Building program	Area (m ²) (est.)	Construction Cost (\$) (est.)	Project Cost (\$) (est.)
	Site development and servicing at Tin Can Hill		30,803,915	38,504,894
A.1	Academic and research facilities	10,939	74,038,841	92,548,551
	Phase 1 of student services centre	2,611	2,611 36,842,387	46,052,983
R.1	Phase 1 of student housing	6,859	49,815,312	62,269,140
A.2	Phase 2 of student services centre	1,406	19,838,208	24,797,760
D 2	Phases 2-3 of student housing	10,289	74,722,969	93,403,711
R.2	Staff, faculty, and researcher housing	411	5,623,464	7,029,330

Table 9. Class D Cost Estimates for Priority Developments (Yellowknife North Slave Campus)

APPENDIX D

LISTED SPECIES SEARCH RESULTS

Animal/Plant	Species	NWT Status SARC	NWT List	Canada Status COSEWIC	Federal List	Distribution Overlap with Site?	Retained as ROPC?	Feeding Guild
Mammals		o, ate						
Barren-ground Caribou	Rangifer tarandus groenlandicus	Threatened	Threatened	Threatened	Under Consideration	Yes	Yes	herbivore
Eastern Red Bat	Lasiurus borealis	Not Assessd	No Status	Endangered	Under Consideration		Yes	invertivore
Hoary Bat	Lasiurus cinereus	Not Assessd	No Status	Endangered	Under Consideration		Yes	invertivore
Little Brown Myotis	Myotis lucifugus	Special Concern	Special Concern	Endangered	Endangered	Yes	Yes	invertivore
Wolverine	Gulo gulo	Not At Risk	No Status	Special Concern	Special Concern	Yes	Yes	carnivore
Birds								
Bank Swallow	Riparia riparia	Not Applicable	Not Applicable	Threatened	Threatened	Yes	Yes	insectivore
Barn Swallow	Hirundo rustica	Not Applicable	Not Applicable	Special Concern	Threatened	Yes	Yes	insectivore
Common Nighthawk	Chordeiles minor	Not Applicable	Not Applicable	Special Concern	Special Concern	Yes	Yes	insectivore
Evening Grosbeak	Coccothraustes vespertinus	Not Applicable	Not Applicable	Special Concern	Special Concern	Yes	Yes	herbivore
Harris's Sparrow	Zonotrichia querula	Not Applicable	Not Applicable	Special Concern	Special Concern	Yes	Yes	omnivore
Horned Grebe	Podiceps auritus	Not Applicable	Not Applicable	Special Concern	Special Concern	Yes	Yes	carnivore
Lesser Yellowlegs	Tringa flavipes	Not Applicable	Not Applicable	Threatened	Under Consideration	Yes	Yes	carnivore
Olive-sided Flycatcher	Contopus cooperi	Not Applicable	Not Applicable	Special Concern	Special Concern	Yes	Yes	insectivore
Red-necked Phalarope	Phalaropus lobatus	Not Applicable	Not Applicable	Special Concern	Special Concern	Yes	Yes	invertivore
Rusty Blackbird	Euphagus carolinus	Not Assessed	No Status	Special Concern	Special Concern	Yes	Yes	insectivore
Short-eared Owl	Asio flammeus	Not Assessed	No Status	Threatened	Special Concern	Yes	Yes	carnivore
Yellow Rail	Coturnicops noveboracensis	Not Applicable	Not Applicable	Special Concern	Special Concern	Yes	Yes	omnivore
Insects								
Transverse Lady Beetle	Coccinella transversoguttata	Not Assessed	No Status	Special Concern	Special Concern	Yes	Yes	
Yellow-banded Bumble Bee	Bombus terricola	Not At Risk	No Status	Special Concern	Special Concern	Yes	Yes	

Source an Search Parameters nwtspeciesat risk.ca North Slave/Tlicho Region APPENDIX E

SOIL CONCENTRATION STATISTICS

	А	В	С	D	E	F	G	Н	I	J	K	L	М
4						Gener	al Statis	tics - Site	Wide So	oil Data			
1	Da	ite/Time of Co	mputation	ProUCL 5.2	2 1/16/2024 3	3:25:15 PM							
2			-										
3		User Sele	cted Option										
			From File	Stats Input_	Tin Can Hill	l.xls							
4		Full	Precision	OFF							••••••		
5													
6													
7	From Fil	e: Stats Input	_Tin Can H	-iii.xis									
/													
8					Ganaral	Statistica for	llnoonoo	red Data S					
9					General		Uncenso						
10													
	V	ariable	NumObs	# Missing	Minimum	Maximum	Mean	Geo-Mea	n SD	SEM	MAD/0.67	Skewness	CV
11		Antimony	42	0	0.52	36	8.376	5.385	7.869	1.214	6.701	1.698	0.939
12													
13		Arsenic		0	9.54	1850	194.3	73.59	356.8	55.05	59.15	3.305	1.836
14		Barium	42	0	9.83	2770	143.9	68.1	419.3	64.7	40.1	6.284	2.915
14		Boron	42	0	5	32.5	11.09	9.739	6.737	1.04	2.669	1.871	0.607
15		Oshalt	40		0.00	40.0	7 000	4 205	7 500	1 171	2 220	2515	1 001
16		Cobalt	42	0	0.28	40.6	7.023	4.395	7.589	1.171	3.239	2.515	1.081
17		Copper	42	0	3.63	145	32.94	25.29	28.19	4.349	13.86	2.442	0.856
		Selenium	42	0	0.2	3.23	0.616	0.459	0.611	0.0942	0.141	2.657	0.992
18		Vanadium	42	0	0.77	55.1	17.43	8.961	18	2.777	8.05	0.817	1.033
19													
20		Zinc	42	0	4.1	768	54.16	30.72	115.3	17.79	25.65	6.059	2.129
21			•••••••	•••••••		••••••		·····	······	•••••••••••••••••••••••••••••••••••••••	·····	•••••••	
					Percer	ntiles for Ur	ncensored	Data Sets					
22													
23								<u>.</u>					
24	V	ariable	NumObs	# Missing	10%ile	20%ile	25%ile(Q1	50%ile(Q2	75%ile(Q3	80%ile	90%ile	95%ile	99%ile
		Antimony	42	0	1.368	2.044	2.908	6.28	12.08	12.36	16.78	26.51	32.47
25		Arsenic	42	0	15.12	26.52	30.25	54.45	141.8	238.4	467.6	885.5	1579
26													1754
27		Barium	42	0	30.06	37.76	42.83	63.7	96.78	110	172	211	1754
28		Boron	42	0	5.12	7.4	7.425	9.3	10	12.32	22.48	25.28	31.15
		Cobalt	42	0	1.445	1.922	2.125	3.93	11	12.3	13.17	18.84	33.59
29		Copper		0	12.52	15.26	16.35	24.7	35.38	43.58	65.14	76.31	135.2
30		Copper		U									
31		Selenium	42	0	0.2	0.3	0.3	0.37	0.613	0.978	1.295	1.534	2.836
		Vanadium	42	0	1.801	3.442	3.638	7.65	33.55	39.32	44.15	50.35	53.62
32		Zinc	42	0	10.07	16.66	17.6	30.65	52.8	59.16	75.65	86.45	491.9
33		200	74	v	10.07	10.00	17.0	00.00	JZ.U	55.10	70.00	00.40	т л Э

	A B C	D E	F	G	Н		J	К	L
1		Site V	Vide So	oil 95%	UCLM				
2									
3	User Selected Options								
4	Date/Time of Computation	ProUCL 5.2 1/16/2024 3	3:26:30 PM						
5	From File	Stats Input_Tin Can Hill	.xls	******				******	
6	Full Precision	OFF							
7	Confidence Coefficient	95%						••••••	
	Number of Bootstrap Operations	2000			••••••				
8								•••••	
9								•••••	
10	Antimony								
11									
12			Genera	l Statistics					
13	Total Νι	umber of Observations	42			Number of [Distinct Obs	ervations	41
14						Number of N	Missing Obs	ervations	0
15		Minimum	0.52					Mean	8.376
16		Maximum	36					Median	6.28
17		SD	7.869				Std. Erro	r of Mean	1.214
18	(Coefficient of Variation	0.939				Ş	Skewness	1.698
19									
20			Normal	GOF Test				••••••	
21		piro Wilk Test Statistic	0.791			Shapiro Wilk	GOF Test		
22		iro Wilk Critical Value	0.922		Data Not	Normal at 1%	Significanc	e Level	
23		Lilliefors Test Statistic	0.159			Lilliefors G	OF Test		
24	1% L	Lilliefors Critical Value	0.157		Data Not	Normal at 1%	Significanc	e Level	
25		Data No	t Normal a	t 1% Signif	icance Leve	əl			
26									
27		Ass	uming No	rmal Distrit	oution			••••••	
28	95% Noi	rmal UCL			95%	UCLs (Adjus	sted for Ske	wness)	
29		95% Student's-t UCL	10.42		959	% Adjusted-C	LT UCL (CI	nen-1995)	10.71
30					95	5% Modified-t	UCL (Johns	son-1978)	10.47
31									
32			Gamma	GOF Test					
33		A-D Test Statistic	0.331		Ander	son-Darling	Gamma G	OF Test	
34		5% A-D Critical Value	0.772	Detected	data appear	Gamma Distr	ributed at 5%	6 Significar	nce Level
35		K-S Test Statistic	0.106		Kolmoge	orov-Smirnov	v Gamma (GOF Test	
36		5% K-S Critical Value	0.14	Detected	data appear	Gamma Distr	ributed at 5%	6 Significar	nce Level
37									

Detected data appear Gamma Distributed at 5% Significance Level 38	6.996 100.6 7.655 78.44 77.74
Gamma Statistics 40 k hat (MLE) 1.272 k star (bias corrected MLE 41 Theta hat (MLE) 6.584 Theta star (bias corrected MLE 42 nu hat (MLE) 6.584 Theta star (bias corrected MLE 43 nu hat (MLE) 106.9 nu star (bias corrected 44 MLE Mean (bias corrected) 8.376 MLE Sd (bias corrected) 44 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value (0.05) 46 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value	6.996 100.6 7.655 78.44 77.74
40 k hat (MLE) 1.272 k star (bias corrected MLE) 41 Theta hat (MLE) 6.584 Theta star (bias corrected MLE) 42 nu hat (MLE) 106.9 nu star (bias corrected) 43 MLE Mean (bias corrected) 8.376 MLE Sd (bias corrected) 44 Approximate Chi Square Value (0.05) 45 Adjusted Level of Significance 0.0443 47 Adjusted Chi Square Value	6.996 100.6 7.655 78.44 77.74
41 Theta hat (MLE) 6.584 Theta star (bias corrected MLE 42 nu hat (MLE) 106.9 nu star (bias corrected 43 MLE Mean (bias corrected) 8.376 MLE Sd (bias corrected) 44 Approximate Chi Square Value (0.05) 45 Adjusted Level of Significance 0.0443 47 Adjusted Chi Square Value	6.996 100.6 7.655 78.44 77.74
42 Theta hat (MLE) 6.584 Theta star (bias corrected MLE 43 nu hat (MLE) 106.9 nu star (bias corrected) 43 MLE Mean (bias corrected) 8.376 MLE Sd (bias corrected) 44 Approximate Chi Square Value (0.05 45 Adjusted Level of Significance 0.0443 46 Adjusted Chi Square Value	100.6 7.655 78.44 77.74
43 MLE Mean (bias corrected) 8.376 MLE Sd (bias corrected) 44 Approximate Chi Square Value (0.05 45 Adjusted Level of Significance 0.0443 46 Adjusted Chi Square Value	7.655 78.44 77.74
44 Approximate Chi Square Value (0.05 45 Adjusted Level of Significance 46 Adjusted Chi Square Value 47 47	78.44
45 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 46	77.74
46	<u>.</u>
47	10.84
	10.84
48	10.84
95% Approximate Gamma UCL 10.74 95% Adjusted Gamma UC 49	
50	
Lognormal GOF Test 51	
Shapiro Wilk Test Statistic 0.924 Shapiro Wilk Lognormal GOF Test 52 52 52 52 52 52 53 53 53 53 53 53 53 53 53 53 53 54 55	
10% Shapiro Wilk Critical Value 0.951 Data Not Lognormal at 10% Significance Leve	
Lilliefors Test Statistic 0.0993 Lilliefors Lognormal GOF Test	
10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Le 55	el
Data appear Approximate Lognormal at 10% Significance Level 56	
57	
Lognormal Statistics 58	
Minimum of Logged Data -0.654 Mean of logged Data 59	
Maximum of Logged Data 3.584 SD of logged Data 60	1.016
61	
Assuming Lognormal Distribution 62	
95% H-UCL 13.16 90% Chebyshev (MVUE) UC	13.75
95% Chebyshev (MVUE) UCL 15.97 97.5% Chebyshev (MVUE) UC	. 19.04
99% Chebyshev (MVUE) UCL 25.08 65	
66	
Nonparametric Distribution Free UCL Statistics 67	
Data appear to follow a Discernible Distribution 68	
69	
Nonparametric Distribution Free UCLs	
95% CLT UCL 10.37 95% BCA Bootstrap UC	10.66
95% Standard Bootstrap UCL 10.41 95% Bootstrap-t UC 72	10.97
95% Hall's Bootstrap UCL 11.08 95% Percentile Bootstrap UC 73	10.56
90% Chebyshev(Mean, Sd) UCL 12.02 95% Chebyshev(Mean, Sd) UC	13.67

	A B	C D	E	F	G	Н	l J	K	L
75		97.5% Chebyshev(Mea	n, Sd) UCL	15.96			99% Chebyshev(M	lean, Sd) UCL	20.46
76									
77					UCL to Use				
78		95% Adjusted Ga	imma UCL	10.84					
79									~ .
80		ns regarding the selection		·····					JL.
81		endations are based upor							
82	However, simulatio	ons results will not cove	rali Real W	orid data se	ets; for addition	nal insignt	the user may want to	consult a statis	stician.
83									
84	Aroopio								
85	Arsenic								
86				Ganara	Statistics				
87									
88		Total Number of Ot		42			Number of Distinct		42
89							Number of Missing) Observations	0
90			Minimum					Mean	194.3
91			Maximum					Median	
92			SD	356.8			Std.	Error of Mean	55.05
93		Coefficient	of Variation	1.836				Skewness	3.305
94									
95				Normal	GOF Test				
96		Shapiro Wilk Te	est Statistic	0.54			Shapiro Wilk GOF	Test	
97		1% Shapiro Wilk Cr	itical Value	0.922		Data Not	Normal at 1% Signifi	icance Level	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
98		Lilliefors Te	est Statistic	0.333			Lilliefors GOF Te	st	
99		1% Lilliefors Cr	itical Value	0.157			Normal at 1% Signifi	icance Level	
100			Data No	t Normal a	t 1% Significa	ance Leve	el		
101									
102			Ass		rmal Distribut	tion			
103		95% Normal UCL				95%	UCLs (Adjusted for	r Skewness)	~~~~~~
104		95% Stude	ent's-t UCL	287		95	% Adjusted-CLT UCI	L (Chen-1995)	314.9
105						95	5% Modified-t UCL (J	Johnson-1978)	291.6
106									
107				Gamma	GOF Test				
108		A-D Te	est Statistic	2.223		Ander	rson-Darling Gamm	na GOF Test	
109		5% A-D Cr	itical Value	0.801	Data N		ma Distributed at 5%	-	vel
110		K-S Te	est Statistic	0.193		Kolmog	orov-Smirnov Gam	ma GOF Test	
111		5% K-S Cr	itical Value	0.143	Data N	Not Gamn	ma Distributed at 5%	Significance Le	vel

	A B C D E	F	G H I J K	L
112	Data Not Gan	nma Distrib	uted at 5% Significance Level	
113		0	On- Al-Mar-	
114		Gamma	Statistics	
115	k hat (MLE)		k star (bias corrected MLE)	
116	Theta hat (MLE)		Theta star (bias corrected MLE)	
117	nu hat (MLE)		nu star (bias corrected)	50.6
118	MLE Mean (bias corrected)		MLE Sd (bias corrected)	
119			Approximate Chi Square Value (0.05)	
120	Adjusted Level of Significance	0.0443	Adjusted Chi Square Value	34.81
121			nma Distribution	
122				,
123	95% Approximate Gamma UCL	278.8	95% Adjusted Gamma UCL	282.5
124				
125		•	al GOF Test	
126	Shapiro Wilk Test Statistic	0.912	Shapiro Wilk Lognormal GOF Test	
127	10% Shapiro Wilk Critical Value		Data Not Lognormal at 10% Significance Level	
128	Lilliefors Test Statistic		Lillefors Lognormal GOF Test	
129	10% Lilliefors Critical Value	0.124	Data appear Lognormal at 10% Significance Leve	ł
130	Data арреаг Арр	roximate L	ognormal at 10% Significance Level	
131				
132		Lognorm	al Statistics	
133	Minimum of Logged Data		Mean of logged Data	
134	Maximum of Logged Data	7.523	SD of logged Data	1.327
135				
136	Assi		normal Distribution	
137	95% H-UCL		90% Chebyshev (MVUE) UCL	303.3
138	95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	446.5
139	99% Chebyshev (MVUE) UCL	609.9		
140				
141	-		oution Free UCL Statistics	
142	Data appe	ear to follow	va Discernible Distribution	
143				
144	-		istribution Free UCLs	,
145	95% CLT UCL	284.9	95% BCA Bootstrap UCL	
146	95% Standard Bootstrap UCL	283.6	95% Bootstrap-t UCL	380.2
147	95% Hall's Bootstrap UCL	387.1	95% Percentile Bootstrap UCL	291.6
148	90% Chebyshev(Mean, Sd) UCL	359.5	95% Chebyshev(Mean, Sd) UCL	434.3
		•		

	A B C D E	F	G H I J K	L
149	97.5% Chebyshev(Mean, Sd) UC	CL 538.1	99% Chebyshev(Mean, Sd) UCL	742.1
150				
151			d UCL to Use	,
152	95% H-UC	CL 313.4		
153				
154		-	that the data were collected in a random and unblase	d manner.
155			o collected from random locations.	
156			udgmental or other non-random methods,	
157	then contac	x a statisticia	n to correctly calculate UCLs.	
158				
159	Note: Suggestions regarding the selection of a 95	% UCL are pr	ovided to help the user to select the most appropriate 95% U	CL.
160	Recommendations are based upon data siz	e, data distrib	ution, and skewness using results from simulation studies.	
161	However, simulations results will not cover all Real	World data s	ets; for additional insight the user may want to consult a statis	stician.
162				
163				
164	Barlum			
165				
166		Genera	l Statistics	
167	Total Number of Observation	ns 42	Number of Distinct Observations	40
168			Number of Missing Observations	0
169	Minimu	m 9.83	Mean	143.9
170	Maximur	m 2770	Median	63.7
171	S	D 419.3	Std. Error of Mean	64.7
172	Coefficient of Variation	on 2.915	Skewness	6.284
173				
174		Normal	GOF Test	
175	Shapiro Wilk Test Statist	ic 0.254	Shapiro Wilk GOF Test	
176	1% Shapiro Wilk Critical Valu	Je 0.922	Data Not Normal at 1% Significance Level	
177	Lilliefors Test Statist	ic 0.388	Lilliefors GOF Test	
178	1% Lilliefors Critical Valu		Data Not Normal at 1% Significance Level	
179	Data N	lot Normal a	t 1% Significance Level	
180				
181	A	ssuming No	rmal Distribution	
182	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
183	95% Student's-t UC	CL 252.7	95% Adjusted-CLT UCL (Chen-1995)	
184			95% Modified-t UCL (Johnson-1978)	263.2
185		.	•••••••••••••••••••••••••••••••••••••••	

	A		В	С			D		Е		F		G		Н			I		J		ł	<		L	
186				 							Gamma	GOF	Test													
187				 					Statis		4.201									Gamn						
188						5%		Critic	al Val	ue	0.787		Da							at 5%	-			.evel		
189									Statis	tic	0.247				Koln	nogo	rov-	Smir	nov	Garr	nma (gof	Tes			
190				 		5%	K-S	Critic	al Val	ue	0.142		Da	ata N	Vot G	iamm	a Dis	stribu	uted	at 5%	Sign	ifica	nce L	.evel		
191				 			D	ata I	Not Ga	amn	na Distrib	uted	at 59	6 Si g	gnifie	cance	e Le	vel								
192				 								••••••	•••••			•••••						•••••	•••••	•••••		••
193				 							Gamma															
194				 ••••••					at (ML	í.	0.794					•••••				bias c			,)	0.753	
195				 •••••			Th	eta ha	at (ML	E)	181.1	•					Th	eta s	tar (bias c	orrec	cted	MLE)) 1	90.9	
196			••••••	 		~~~~~	~~~~~	nu ha	at (ML	E)	66.72	••••••	******	~~~~	~~~~~		•••••	~~~~~	nu	star (I	bias c	corre	ected))	63.29	
197				 	MLE	Mea	an (bi	as co	orrecte	ed)	143.9	<u>.</u>							MLE	E Sd (I	bias c	corre	ected)) 1	65.7	
198			•••••	 •••••								å	•••••			App	proxi	mate	Chi	Squa	re Va	lue ((0.05))	45.99	••
199				 Ac	ljuste	ed Le	vel o	f Sigr	nifican	се	0.0443	ģ								ed Ch			Value	•	45.46	
200			•••••	 •••••								å	•••••			•••••						•••••	•••••			••
201			•••••	 •••••							ming Ga					•••••						•••••	•••••	•••••		••
202									ma U(198			•••••				95%	% Ac	ljusteo	d Gan	nma	UCL	2	00.3	~~~
202				 								i														
200			•••••	 •••••						I	Lognorm	al GO)F Te	st		•••••						•••••		•••••		••
205				 					Statis		0.884				S	hapiı	ro W	/ilk L	.ogr	orma	al GC)F T	est			
200			•••••	 10%	Shap	oiro \	Vilk	Critic	al Val	ue	0.951		•••••	Da	ata N	ot Loç	gnorr	mal a	at 10	% Sig	nifica	nce	Leve	I		••
200			•••••	 •••••		Lillie	efors	Test	Statis	tic	0.118		•••••			Lillie	ofors	s Log	jnor	mal (gof	Tes	t	•••••		••
207		~~~~~	••••••	 	10% I	Lillie	fors	Critic	al Val	ue	0.124	••••••	******	Data	a app	ear Lo	ogno	rmal	at 1	0% Si	ignific	canc	e Lev	el	••••••	***
200]	Data	app	əar A	ppro	oximate L	ogno	ormal	ati	10%	Signi	ifica	nce	Lev	əl			••••••			
210			•••••	 •••••							•••••	•••••	•••••			•••••						•••••		•••••		••
211				 							Lognorn	nal St	atistic													
212				 •••••	Mi	nim	um o	f Logo	ged Da	ata	2.285	Į	•••••			•••••				Mean	oflo	gged	Data	1	4.221	••
212			•••••	 •••••	Ма	ximi	um o	f Logo	ged Da	ata	7.927		•••••			•••••				SD	of lo	gged	Data	9	0.934	••
214	~~~~~~	~~~~~	••••••	 	~~~~~	~~~~~	~~~~~			~~•••		å	******	~~~~	~~~~~			~~~~~	~~~~~		•••••				••••••	~~
215				 							ning Log	norm	al Dis	strib	utio	n										
216			•••••	 •••••				95%	- H-UC	CL	147	Į	•••••			•••••				yshev					55.4	••
217				 95%	6 Ch	ebys	hev (MVL	JE) UC	CL	178.8						97.	5% C	Cheb	yshev	′ (MV	ΌE)	UCL	2	11.2	
217				 99%	6 Che	ebys	hev ((MVL	JE) UC	CL	274.9	\$	•••••			•••••						•••••	•••••			••
210				 						ā	•••••	š	•••••			•••••						•••••	•••••	.ä		••
219				 •••••				No	npara	me	tric Distri	butio	n Fre	e U	CLS	Statist	ics		~~~~	•••••				~~~~~	•••••	w
220 221			•••••	 •••••				Da	ta ap	рөа	r to follov	v a Di	sceri	nible	e Dis	stribu	tion					•••••	•••••			•••
			•••••	 								•••••	•••••			•••••						•••••				
222	L			 																						

	А	В		С	D	E		F	G		Н			J		K	L
223							-	ametric D	istributior	n Free	UCLs						
224					9	5% CLT U	ICL	250.3					95	% BCA	Boots	strap UCL	347.6
225				95% S	standard B	ootstrap U	JCL	253						95% E		rap-t UCL	788.7
226				95%	% Hall's B	ootstrap U	JCL	658.4				95	% Pe	rcentile	Boots	strap UCL	274.3
227			~~~~~	90% Cheł	oyshev(M	ean, Sd) U	ICL	338			*****	95%	Cheb	yshev(l	Mean,	Sd) UCL	425.9
228			97	7.5% Cheł	oyshev(M	ean, Sd) U	ICL	547.9				99%	Cheb	yshev(l	Mean,	Sd) UCL	787.6
229									••••••							•••••	••••••
230							S	Suggester	UCL to I	Use							
231						95% H-U	JCL	147			••••••						
232											••••••						
233		The	e calc	ulated U(CLs are t	oased on	assu	Imptions	hat the d	ata w	ere colle	ected	in a I	andon	n and	l unbiase	d manner.
234					Plea	ase verify	the c	data were	collected	i from	randor	n loca	tions	.			
235				H	f the data	were col	llecte	od using j	udgment	al or c	other no	n-ran	dom	metho	ds,		
236					t	hen conta	acta	statisticia	n to corre	octly c	alculate	UCL	s.				
237							•••••				••••••						
238	I	Note: Sugg	estions	s regardin				JCL are pro						nost app	propria	ate 95% U	CL.
239		Reco	mmen	dations ar	e based u	pon data si	ize, d	lata distribu	ition, and s	skewne	ess usin	g resu	lts fro	m simu	lation	studies.	*****
240	Ho	vever, sim	ulatior	ns results r	will not co	wer all Rea	al Wo	orld data se	ets; for add	litional	insight t	he use	er may	/ want t	o cons	sult a stati	stician.
241																•••••	
	Boron																
243																	
244								Genera	Statistics	3							
245				Total N	umber of	Observatio	ons	42				Num	ber o	fDistind	ct Obs	servations	20
246					Numl	ber of Dete	ects	16					N	lumber	of No	n-Detects	26
247				Nun	nber of Di	stinct Dete	ects	15				Nun	nber c	of Distin	ct No	n-Detects	5
248					Mir	nimum Del	tect	6.2						Minim	um N	on-Detect	5
249					Мах	kimum Del	tect	32.5						Maxim	um N	on-Detect	9.4
250					Var	iance Dete	ects	71.99						Perce	nt No	n-Detects	61.9%
251						Mean Dete	ects	16.34							SI	D Detects	8.485
252					M	edian Dete	ects	13.2							C	V Detects	0.519
253					Skew	ness Dete	ects	0.582						K	urtosi	s Detects	-1.073
254				N	Aean of Lo	ogged Dete	ects	2.664						SD of	Logge	d Detects	0.529
255																	
256						N	orma	al GOF Te	st on Det	ects C	Dnly						
257					•	Test Statis	stic	0.894			ę	Shapi	ro Wi	ik gof	Test		
258			•••••		piro Wilk	Critical Va	alue	0.844	D	etecte	d Data a				-	ificance L	evel
259					Lilliefors	Test Statis	stic	0.195			•••••	Lillie	ofors	GOF Te	əst		
							i										

	A B C D E	F	G H I J K	L
260	1% Lilliefors Critical Value		Detected Data appear Normal at 1% Significance Le	evel
261	Detected Data	appear N	ormal at 1% Significance Level	
262				
263	Kaplan-Meler (KM) Statistics u	sing Norma	al Critical Values and other Nonparametric UCLs	
264	KM Mean	9.625	KM Standard Error of Mean	1.187
265	90KM SD		95% KM (BCA) UCL	11.48
266	95% KM (t) UCL	11.62	95% KM (Percentile Bootstrap) UCL	11.51
267	95% KM (z) UCL	11.58	95% KM Bootstrap t UCL	12.1
268	90% KM Chebyshev UCL	13.19	95% KM Chebyshev UCL	14.8
269	97.5% KM Chebyshev UCL	17.04	99% KM Chebyshev UCL	21.43
270		······		
271		Tests on I	Detected Observations Only	
272	A-D Test Statistic	0.599	Anderson-Darling GOF Test	
273	5% A-D Critical Value	0.742	Detected data appear Gamma Distributed at 5% Significa	nce Level
274	K-S Test Statistic		Kolmogorov-Smirnov GOF	
275	5% K-S Critical Value	0.216	Detected data appear Gamma Distributed at 5% Significa	nce Level
276		əar Gamma	a Distributed at 5% Significance Level	
277				
278	Gamma	Statistics of	on Detected Data Only	
279	k hat (MLE)	4.029	k star (bias corrected MLE)	3.315
280	Theta hat (MLE)	4.055	Theta star (bias corrected MLE)	4.928
281	nu hat (MLE)	128.9	nu star (bias corrected)	106.1
282	Mean (detects)	16.34		
283				
284			using Imputed Non-Detects	
285	GROS may not be used when data se	t has > 50%	NDs with many tied observations at multiple DLs	
286	GROS may not be used when kstar of detects is sr	mall such as	s <1.0, especially when the sample size is small (e.g., <15-2	20)
287	For such situations, GROS n	nethod may	yield incorrect values of UCLs and BTVs	
288		ally true whe	n the sample size is small.	
289		nd UCLs ma	y be computed using gamma distribution on KM estimates	
290	Minimum	0.01	Mean	7.028
291	Maximum		Median	2.914
292	SD	9.179	CV	1.306
293	k hat (MLE)	0.281	k star (bias corrected MLE)	0.277
294	Theta hat (MLE)	25.03	Theta star (bias corrected MLE)	25.41
295	nu hat (MLE)	23.59	nu star (bias corrected)	23.24
296	Adjusted Level of Significance (β)	0.0443		
290				

	A B C D E	F	G H I J K	L
297	Approximate Chi Square Value (23.24, α)		Adjusted Chi Square Value (23.24, β)	13
298	95% Gamma Approximate UCL	12.31	95% Gamma Adjusted UCL	12.56
299				
300	Estimates of G	amma Pai	rameters using KM Estimates	
301	Mean (KM)	9.625	SD (KM)	7.361
302	Variance (KM)	54.19	SE of Mean (KM)	1.187
303	k hat (KM)	1.71	k star (KM)	1.603
304	nu hat (KM)	143.6	nu star (KM)	134.7
305	theta hat (KM)	5.63	theta star (KM)	6.003
306	80% gamma percentile (KM)	14.78	90% gamma percentile (KM)	19.73
307	95% gamma percentile (KM)	24.52	99% gamma percentile (KM)	35.29
308			•	
309	Gamm	a Kaplan-l	Meler (KM) Statistics	
310	Approximate Chi Square Value (134.69, α)	108.9	Adjusted Chi Square Value (134.69, β)	108
311	95% KM Approximate Gamma UCL	11.91	95% KM Adjusted Gamma UCL	12
312			· · · · · · · · · · · · · · · · · · ·	
313	Lognormal G	OF Test or	n Detected Observations Only	
314	Shapiro Wilk Test Statistic	0.925	Shapiro Wilk GOF Test	
315	10% Shapiro Wilk Critical Value	0.906	Detected Data appear Lognormal at 10% Significance	_evel
316	Lilliefors Test Statistic	0.167	Lilliefors GOF Test	
317	10% Lilliefors Critical Value	0.196	Detected Data appear Lognormal at 10% Significance	_evel
318	Detected Data a	ppear Log	normal at 10% Significance Level	
319		*****		
320	Lognormal R	OS Statistic	s Using Imputed Non-Detects	
321	Mean in Original Scale	8.66	Mean in Log Scale	1.794
322	SD in Original Scale	8.104	SD in Log Scale	0.852
323	95% t UCL (assumes normality of ROS data)	10.76	95% Percentile Bootstrap UCL	10.7
324	95% BCA Bootstrap UCL	10.85	95% Bootstrap t UCL	11.28
325	95% H-UCL (Log ROS)	11.59		
326		i	٤غ	
327	Statistics using KM estimate	s on Logg	ed Data and Assuming Lognormal Distribution	
328	KM Mean (logged)	2.06	KM Geo Mean	7.844
320 329	KM SD (logged)	0.585	95% Critical H Value (KM-Log)	1.962
329	KM Standard Error of Mean (logged)	0.0974	95% H-UCL (KM -Log)	11.13
	KM SD (logged)	0.585	95% Critical H Value (KM-Log)	1.962
331 222	KM Standard Error of Mean (logged)	0.0974		
332			L	
333				

	А		В		С		D		Е			G		Н		I		J		K	L
334										C	DL/2 S	Statistics	3								
335					DL/	2 No	rmal								D)L/2 L	.og-T	ransfo	ormec	3	
		•••••				Me	ean in	Origir	nal Scale	e 8.	658			••••••		•••••		Me	ean in	Log Scale	1.847
336		••••••				•••••	SD in	Origir	nal Scale	ə 7.	996					•••••		;	SD in	Log Scale	e 0.747
337				~~~~~	95% t U	JCL (Assun	nes no	ormality)) 10	.73				~~~~~			9	5% H·	-Stat UCL	10.71
338					DL/2	2 is n	otar	ecom	mende	d met	hod,	provide:	d for	compa	ariso	ns ar	nd his	torica	i reas	ons	
339		•••••				•••••										•••••					•••••
340								No	nparan	netric	Distri	bution F	-ree	UCL S	tatisti	cs					
341		••••••					Detec	ted D	ata app	oear N	lorma	l Distrib	outed	at 1%	Sign	ificar	nce Le	əvəl			•••••
342		•••••				••••••										•••••					
343							·····	·····		Sugo	este	d UCL to	o Use					·····		••••••	
344							95	% KM	(t) UCL												
345		•••••				•••••			(,) 0 0 1			<u>.</u>				•••••					
346		Vioto:	Sugar		c rogard	ling th			of a 05%			ovidod to		the use	or to c		thom		aropri	ate 95% L	
347					-	-						ution, and									
348																					
349	Ho	wever	r, simi	ulatio	ns result	ts wil	I not c	over a	II Real V	/vorld (data si	ets; for a	Idditio	nal Insi	ight th	ie use	r may	want		sult a stat	istician.
350																					
351																					
352	Cobalt																				
353																					
354										Ge	enera	l Statisti	ics								
355					Total	lNum	nber o	f Obse	ervations	s 42	!					Num	ber of	Distin	ct Obs	servations	40
356																Num	ber of	Missir	ng Obs	servations	6 0
357								N	1inimum	n 0.	28									Mear	n 7.023
358								М	aximum	n 40	.6									Mediar	n 3.93
359									SD) 7.	589							Sto	l. Errc	or of Mear	n 1.171
360						C	oeffici	ent of \	Variatior	n 1.	081								ę	Skewness	2.515
361																					
362										No	ormal	GOF Te	əst								
363									Statistic	c 0.	708				S	hapiı	o Wil	k GOF	Test	!	
364		•••••							al Value	e 0.	922	·····		Data	Not N	lorma	l at 1%	% Sign	ificand	ce Level	
365						Li	lliefor	s Test	Statistic	c 0.	207					Lillie	fors C	iof t	est		
366		••••••			1	% Lil	liefors	s Critic	cal Value	e 0.	157	\$		Data	Not N	lorma	ll at 1%	6 Sign	ificand	ce Level	•••••
367		••••••				•••••			Data No	ot Nor	mal a	t 1 % Sig		ance l							•••••
368				•••••			~~~~~		*****	******	~~~~~				•••••		~~~~~				••••••
		•••••				•••••			As	sumin	g No	rmal Dis	stribu	ition		•••••					
369		••••••			95% I	Norn	nal UC	CL						9	5% U	ICLs	(Adju	sted fo	or Ske	ewness)	
370												<u> </u>									

Main State State State 373		А	В	С	D	E	F	G H I J K	L
372	371				95% Stud	ent's-t UCL	8.993	95% Adjusted-CLT UCL (Chen-1995)	9.434
Camma COP Test A-D Test Statistic 0.999 Anderson-Darling Gamma COP Test 375 5% A-D Critical Value 0.73 Data Not Gamma Distributed at 5%. Significance Level 377 5% K-D Critical Value 0.135 Kolmogorov-Smirnov Gamma OCF Test 378 5% K-S Critical Value 0.14 Detected data appeor Gamma Distributed at 5%. Significance Level 378 Detected data billion Appr. Gamma Distributed at 5%. Significance Level 0.14 Detected data appeor Gamma Distributed at 5%. Significance Level 379 Detected data billion Appr. Gamma Distributed at 5%. Significance Level 6.181 381 Camma Statistics 6.181 382 K het (MLE) 10.13 nu star (bias corrected) 6.588 383 nu het (MLE) 10.13 nu star (bias corrected) 7.231 384 MLE Mean (bias corrected) 7.023 Adjusted Chi Square Value 7.323 385 Adjusted Level of Significance 0.043 Adjusted Chi Square Value 7.323 386 MLE Mean (bias corrected) 0.597 Shaptro Wilk Critical Value 0.597 387 <th>372</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>95% Modified-t UCL (Johnson-1978)</th> <th>9.069</th>	372							95% Modified-t UCL (Johnson-1978)	9.069
A-D Test Statistic 9569 Anderson-Darling Gamma GOF Test 775 5% A-D Critical Value 0.773 Data Nct Gamma Distributed at 5% Significance Level 776 K-S Test Statistic 0.135 Kolmogorov-Smirnov Gamma GOF Test 777 5% K-S Critical Value 0.14 Detected data appear Gamma Distributed at 5% Significance Level 778 Detected data follow Appr. Gamma Distribution at 5% Significance Level 1.136 779 Detected data follow Appr. Gamma Distribution at 5% Significance Level 6.181 779 Detected data follow Appr. Gamma Statistics 1.136 780 Camma Statistics 1.138 781 Thete het (MLE) 5.821 Thete star (bias corrected) 6.58 783 MLE Men (bias corrected) 7023 MLE S (bias corrected) 6.58 784 MLE Men (bias corrected) 0.043 Adjusted Chi Square Value (005) 73.31 784 Adjusted Level of Significance 0.043 Adjusted Chi Square Value (005) 73.23 785 MLE Men (bias corrected) 0.991 Statistics 73.23 786 Maust	373								
Approximate Style Orts Data Not Gamma Distributed at 5% Significance Level 76 K-S Test Statistic 0.135 Kolmogorov-Smirnov Gamma GOF Test 77 5% K-S Critical Value 0.14 Detected data splots of the splot of the splo	374						Gamma		
Action Common Control Contro Control Contrel Control Control Contrel Control Control Control C	375				A-D T	est Statistic	0.969	Anderson-Darling Gamma GOF Test	
K-S Test Statistic 0.15 Kolmogorv-Smirnov Gamma GOF Test 77 5% K-S Critical Value 0.14 Detected data appear Gamma Distributed at 5% Significance Level 78 Detected data appear Gamma Distributed at 5% Significance Level 1 78 Camma Statistics 1 78 Camma Statistics 1 78 K hat (MLE) 1206 k star (bias corrected MLE) 1.136 78 Theta hat (MLE) 5.821 Theta tar (bias corrected) 95.44 78 MLE Mean (Incerceted) 7.023 MLE 5d (bias corrected) 95.44 78 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 7.323 78 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 7.323 78 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 7.323 78 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 7.323 78 Adjusted Chi Square Value 0.051 Data Not Lognormal GOF Test 1.05 79 Shapiro	376		 				0.773		vel
Adjusted Level of Significance 0.043 Adjusted Chi Square Value 73.23 383 NLE Mean (MLE) 5.821 Theta star (bias corrected) 5.841 384 NLE Mean (bias corrected) 7.023 MLE Sd (bias corrected) 5.841 385 NLE Mean (bias corrected) 7.023 MLE Sd (bias corrected) 6.588 386 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 73.23 387 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 73.23 388 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 73.23 389 Lognormal QOF Test 95% Adjusted Gamma UCL 9.069 95% Adjusted Gamma UCL 9.152 391 Lognormal QOF Test 95% Adjusted Gamma UCL 9.069 95% Adjusted Gamma UCL 9.152 393 Shapiro Wilk Test Startsic 0.911 Data Not Lognormal GOF Test 9152 394 Luiliefors Test Startsic 0.124 Data appear Lognormal at 10% Significance Level 394 Luiliefors Test Startsic 0.124 Data appear Lognormal at 10% Significance Level 395 Log	377		 		K-S T	est Statistic		Kolmogorov-Smirnov Gamma GOF Test	
Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 72.3 38	378		 		5% K-S Ci	itical Value	0.14		nce Level
Germme Statistics Same Statistics Reference Statistics Same Statistic	379				Detected d	ata follow A	ppr. Gamı	na Distribution at 5% Significance Level	
381 k hat (MLE) 1.206 k star (bias corrected MLE) 1.136 382 Theta hat (MLE) 5.821 Theta star (bias corrected MLE) 6.181 384 nu hat (MLE) 101.3 nu star (bias corrected) 96.44 386 MLE Mean (bias corrected) 7.023 MLE Sd (bias corrected) 6.588 386 Approximate Chi Square Value (0.05) 73.91 73.91 387 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value (0.05) 73.91 388 Adjusted Corrected of Significance 0.0443 Adjusted Chi Square Value (0.05) 73.91 389 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value (0.05) 73.91 389 Adjusted Correct of Significance 0.0443 Adjusted Chi Square Value (0.05) 73.91 389 Econormal GOF Test 5.521 Data Not Lognormal GOF Test 91.52 391 Lilliefors Critical Value (0.951 Data Not Lognormal at 10% Significance Level 92.91 393 Shapiro Wilk Critical Value (0.124 Data suppear Lognormal at 10% Significance Level 9	380								
382 Theta hat (MLE) 5.821 Theta star (bas corrected MLE) 6.181 383 nu hat (MLE) 101.3 nu star (bas corrected) 96.44 384 MLE Mean (bas corrected) 7.023 MLE Sd (bias corrected) 6.589 386 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value (0.05) 73.91 387 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value (0.05) 73.23 388 Adjusted Carret of Significance 0.0443 Adjusted Carret Value (0.05) 73.91 389 Adjusted Carret of Significance 0.0443 Adjusted Carret Value (0.05) 73.91 380 Stapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal QOF Test 91.52 391 Lulliefors Test Statistic 0.921 Data Not Lognormal at 10% Significance Level 91.52 393 10% Shapiro Wilk Critical Value 0.124 Data appear Lognormal at 10% Significance Level 91.52 394 10% Shapiro Wilk Critical Value 0.124 Data appear Lognormal at 10% Significance Level 92.52 395 10%	381						Gamma	Statistics	
33 Theta hat (MLE) 5.821 Theta star (bias corrected MLE) 6.181 34 nu hat (MLE) 101.3 nu star (bias corrected) 95.44 386 MLE Mean (bias corrected) 7.023 MLE Sd (bias corrected) 6.588 387 Adjusted Level of Significance 0.043 Adjusted Chi Square Value (0.05) 73.91 388 Adjusted Level of Significance 0.043 Adjusted Chi Square Value (0.05) 73.23 389 Adjusted Level of Significance 0.043 Adjusted Chi Square Value (0.05) 73.91 389 Adjusted Level of Significance 0.043 Adjusted Chi Square Value (0.05) 73.91 389 Shapiro Wilk Cagnormal GOF Test 91.52 91.52 91.52 391 Shapiro Wilk Cagnormal GOF Test 91.52 91.52 91.52 393 Shapiro Wilk Critical Value (0.951 Data Not Legnormal at 10% Significance Level 91.52 394 Lilliefors Test Statistic (0.921 Data appear Legnormal at 10% Significance Level 91.52 395 Mirimum of Legged Data (1.125) Mean of legged Data (1.481) 1.481 <th>382</th> <th></th> <th></th> <th></th> <th></th> <th>, ,</th> <th>1.206</th> <th></th> <th>1.136</th>	382					, ,	1.206		1.136
Base MLE Mean (bias corrected) 7.023 MLE Sd (bias corrected) 6.588 385 Adjusted Chi Square Value (0.05) 73.91 73.91 386 Adjusted Chi Square Value (0.05) 73.91 387 Adjusted Chi Square Value (0.05) 73.91 388 Adjusted Chi Square Value (0.05) 73.23 388 Adjusted Chi Square Value (0.05) 73.23 389 Adjusted Chi Square Value (0.05) 73.23 389 Adjusted Chi Square Value (0.05) 73.91 389 Adjusted Chi Square Value (0.05) 73.91 389 Adjusted Chi Square Value (0.05) 73.91 389 Econormal GOF Test 91 390 Shapiro Wilk Test Statistic (0.921) Shapiro Wilk Lognormal GOF Test 391 Lilliefors Test Statistic (0.105) Lilliefors Lognormal GOF Test 392 Lilliefors Critical Value (0.124) Data appear Lognormal at 10% Significance Level 393 10% Lilliefors Critical Value (0.124) Data appear Lognormal at 10% Significance Level 394 10% Lilliefors Critical Value (0.123) Mean of logged Data (1.481)	383				Theta	a hat (MLE)		Theta star (bias corrected MLE)	6.181
385 Approximate Chi Square Value (0.05) 73.91 386 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 73.23 387 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 73.23 388 Assuming Gemme Distribution 73.23 73.23 73.23 389 Assuming Gemme Distribution 9.059 95% Adjusted Gemme UCL 9.152 391 Lognormal GOF Test 9.051 Shapiro Wilk Lognormal GOF Test 9.152 393 Shapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal GOF Test 9.152 394 LUIIlefors Test Statistic 0.921 Data Not Lognormal GOF Test 9.152 394 LUIIlefors Test Statistic 0.105 LUIIlefors Lognormal GOF Test 395 10% Elitiefors Critical Value 0.124 Data appear Lognormal GOF Test 396 Lognormal Statistics 0.105 LIIIlefors Lognormal GOF Test 397 Data appear Approximate Lognormal at 10% Significance Level 10% Elitiefors 398 Lognormal Statistics 100 1.005 399 Lognormal Statistics 100 1.0	384							nu star (bias corrected)	95.44
386 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 73.23 387 Adjusted Level of Significance 0.0443 Adjusted Chi Square Value 73.23 388 Assuming Gamma Distribution 399 95% Adjusted Gamma UCL 9.152 390 95% Approximate Gamma UCL 9.069 95% Adjusted Gamma UCL 9.152 391 Lognormal GOF Test 5 5 10% Shapiro Wilk Critical Value 0.951 Data Not Lognormal GOF Test 393 10% Shapiro Wilk Critical Value 0.951 Data Not Lognormal GOF Test 394 Lilliefors Test Statistic 0.105 Lilliefors Lognormal GOF Test 395 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 396 Data appear Lognormal at 10% Significance Level Data appear Lognormal at 10% Significance Level 397 Data appear Lognormal at 10% Significance Level 1.481 398 Lognormal Statistics 1.05 399 Lognormal Statistics 1.05 399 Statistics 3.704 SD of logged Data 1.05 401 Maximum of Logged Data 3.704	385				MLE Mean (bias	corrected)	7.023		6.588
387 Assuming Gamma Distribution 388 Assuming Gamma Distribution 390 95% Approximate Gamma UCL 9.069 95% Adjusted Gamma UCL 9.152 391 Lognormal GOF Test 931 95% Adjusted Gamma UCL 9.152 391 Lognormal GOF Test 933 10% Shapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal GOF Test 393 10% Shapiro Wilk Critical Value 0.951 Data Not Lognormal at 10% Significance Level 394 10% Shapiro Critical Value 0.124 Data appear Lognormal at 10% Significance Level 396 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 397 Data appear Approximate Lognormal at 10% Significance Level 10% Lilliefors Critical Value 0.124 398 Lognormal Statistics 100 1.481 400 Maximum of Logged Data 3.704 SD of logged Data 1.481 401 Maximum of Logged Data 3.704 SD of logged Data 1.005 403 Assuming Lognormal Distribution 39% Chebyshev (MVUE) UCL 11.05 90% Chebyshev (MVUE) UCL 11.05 403 S5% Chebyshev (MVUE)	386		 					Approximate Chi Square Value (0.05)	73.91
Assuming Gamma Distribution 389 95% Approximate Gamma UCL 9.069 95% Adjusted Gamma UCL 9.152 391 Lognormal GOF Test 393 Shapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal GOF Test 393 Shapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal GOF Test 394 10% Shapiro Wilk Critical Value 0.951 Data Not Lognormal GOF Test 395 Lilliefors Test Statistic 0.105 Lilliefors Lognormal GOF Test 396 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 397 Data appear Approximate Lognormal at 10% Significance Level 10% Lilliefors Critical Value 1.1273 398 Lognormal Statistics 1.05 1.481 400 Minimum of Logged Data -1.273 Mean of logged Data 1.481 401 Maximum of Logged Data 3.704 SD of logged Data 1.005 402 Assuming Lognormal Distribution 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 11.05 404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 <td< th=""><th>387</th><th></th><th> </th><th>Ac</th><th>ljusted Level of S</th><th>Significance</th><th>0.0443</th><th>Adjusted Chi Square Value</th><th>73.23</th></td<>	387		 	Ac	ljusted Level of S	Significance	0.0443	Adjusted Chi Square Value	73.23
389 95% Approximate Gamma UCL 9.069 95% Adjusted Gamma UCL 9.152 391 392 Lognormal GOF Test 393 Shapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal GOF Test 394 10% Shapiro Wilk Critical Value 0.921 Data Not Lognormal at 10% Significance Level 394 10% Lilliefors Test Statistic 0.105 Lilliefors Lognormal GOF Test 395 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 396 Data appear Apportimate Lognormal at 10% Significance Level 10% Significance Level 397 Data appear Apportimate Lognormal at 10% Significance Level 398 Lognormal Statistics 399 -1.273 Mean of logged Data 400 Maximum of Logged Data -1.273 401 Maximum of Logged Data 3.704 402 SD of logged Data 1.005 403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 404 95% H-UCL 12.82 97.5% Chebyshev (MVUE) UCL 11.26 405 99% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL	388		 						
390 95% Approximate Gamma UCL 9.069 95% Adjusted Gamma UCL 9.152 391 392 Lognormal GOF Test 392 Shapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal GOF Test 393 10% Shapiro Wilk Critical Value 0.951 Data Not Lognormal at 10% Significance Level 394 Lilliefors Test Statistic 0.105 Lilliefors Lognormal GOF Test 395 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 396 Data appear Approximate Lognormal at 10% Significance Level 10% Significance Level 397 Data appear Approximate Lognormal at 10% Significance Level 1481 398 Lognormal Statistics 100 399 Lognormal Statistics 1005 399 Statistics 1005 390 Minimum of Logged Data -1.273 400 Maximum of Logged Data 3.704 401 SD of logged Data 1.005 402 Assuming Lognormal Distribution 105 404 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 405 99% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 406 99% Chebyshev (MVUE) UCL 20.07 20.07	389		 				•	nma Distribution	
Lognormal GOF Test 393 Shapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal GOF Test 394 10% Shapiro Wilk Critical Value 0.951 Data Not Lognormal at 10% Significance Level 395 10% Lilliefors Test Statistic 0.105 Lilliefors Lognormal at 10% Significance Level 396 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 397 Data appear Approximate Lognormal at 10% Significance Level 0.124 398 Lognormal Statistics 399 Lognormal Statistics 400 Minimum of Logged Data -1.273 401 Maximum of Logged Data 3.704 402 SD of logged Data 1.005 402 403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 406 99% Chebyshev (MVUE) UCL 20.07 40.2 40.2 40.3	390		 					95% Adjusted Gamma UCL	9.152
382 Shapiro Wilk Test Statistic 0.921 Shapiro Wilk Lognormal GOF Test 393 10% Shapiro Wilk Critical Value 0.951 Data Not Lognormal at 10% Significance Level 394 Lilliefors Test Statistic 0.105 Lilliefors Lognormal GOF Test 396 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 396 Data appear Approximate Lognormal at 10% Significance Level Data appear Approximate Lognormal at 10% Significance Level 397 Data appear Approximate Lognormal at 10% Significance Level 1.481 398 Lognormal Statistics 399 Anximum of Logged Data -1.273 400 Maximum of Logged Data 3.704 SD of logged Data 1.005 401 Maximum of Logged Data 3.704 SD of logged Data 1.005 402 Assuming Lognormal Distribution 1.005 90% Chebyshev (MVUE) UCL 11.05 404 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.26 405 95% Chebyshev (MVUE) UCL 20.07 15.26 99% Chebyshev (MVUE) UCL 15.26	391		 						
393 10% Shapiro Wilk Critical Value 0.951 Data Not Lognormal at 10% Significance Level 394 Lilliefors Test Statistic 0.105 Lilliefors Lognormal GOF Test 395 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 396 Data appear Approximate Lognormal at 10% Significance Level 397 Data appear Approximate Lognormal at 10% Significance Level 398 Lognormal Statistics 400 Minimum of Logged Data -1.273 400 Maximum of Logged Data 3.704 401 Maximum of Logged Data 3.704 402 Assuming Lognormal Distribution 1.005 403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 405 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 406 99% Chebyshev (MVUE) UCL 20.07 40.6 40.6 40.75	392		 				-		
394 Lilliefors Test Statistic 0.105 Lilliefors Lognormal GOF Test 395 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 396 Data appear Approximate Lognormal at 10% Significance Level 397 Data appear Approximate Lognormal at 10% Significance Level 398 Lognormal Statistics 399 Logged Data -1.273 400 Minimum of Logged Data -1.273 401 Maximum of Logged Data 3.704 402 SD of logged Data 1.005 403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 405 99% Chebyshev (MVUE) UCL 20.07 406 406 407	393		 						
395 10% Lilliefors Critical Value 0.124 Data appear Lognormal at 10% Significance Level 396 Data appear Approximate Lognormal at 10% Significance Level 397 Data appear Approximate Lognormal at 10% Significance Level 398 Lognormal Statistics 399 Mean of logged Data 1.481 400 Maximum of Logged Data -1.273 Mean of logged Data 1.481 401 Maximum of Logged Data 3.704 SD of logged Data 1.005 402 Assuming Lognormal Distribution 403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 405 99% Chebyshev (MVUE) UCL 20.07 406 406 407	394		 	10%	-		0.951		
Image: Section of the system of the syste	395		 		Lilliefors T	est Statistic	0.105	Lilliefors Lognormal GOF Test	
397	396		 						!
Lognormal Statistics 399 Minimum of Logged Data -1.273 Mean of logged Data 1.481 400 Maximum of Logged Data 3.704 SD of logged Data 1.005 401 Maximum of Logged Data 3.704 SD of logged Data 1.005 402 Assuming Lognormal Distribution 403 1.005 11.055 403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 405 99% Chebyshev (MVUE) UCL 20.07 406 405 406	397		 		Data a	ppear Appi	roximate L	ognormal at 10% Significance Level	
399 Minimum of Logged Data -1.273 Mean of logged Data 1.481 400 Maximum of Logged Data 3.704 SD of logged Data 1.005 401 Maximum of Logged Data 3.704 SD of logged Data 1.005 402 Assuming Lognormal Distribution 403 1.005 11.05 403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 406 99% Chebyshev (MVUE) UCL 20.07 20.07 15.26	398		 						
400 Maximum of Logged Data 3.704 SD of logged Data 1.005 401 402 Assuming Lognormal Distribution 403 403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 405 99% Chebyshev (MVUE) UCL 20.07 406 406 407	399		 				-	al Statistics	
401 Assuming Lognormal Distribution 402 403 403 95% H-UCL 404 95% Chebyshev (MVUE) UCL 405 99% Chebyshev (MVUE) UCL 406 99% Chebyshev (MVUE) UCL	400				Minimum of L	ogged Data	-1.273	Mean of logged Data	1.481
Assuming Lognormal Distribution 403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 405 99% Chebyshev (MVUE) UCL 20.07 406 99% Chebyshev (MVUE) UCL 10.55	401		 		Maximum of L	ogged Data	3.704	SD of logged Data	1.005
403 95% H-UCL 10.55 90% Chebyshev (MVUE) UCL 11.05 404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 405 99% Chebyshev (MVUE) UCL 20.07 406 10.55 10.55	402		 						
404 95% Chebyshev (MVUE) UCL 12.82 97.5% Chebyshev (MVUE) UCL 15.26 405 99% Chebyshev (MVUE) UCL 20.07 406	403		 			Assu	ming Logi	normal Distribution	
405 99% Chebyshev (MVUE) UCL 20.07 406	404		 				10.55	90% Chebyshev (MVUE) UCL	11.05
406	405		 	95%	6 Chebyshev (N	IVUE) UCL	12.82	97.5% Chebyshev (MVUE) UCL	15.26
407	406		 	99%	6 Chebyshev (N	IVUE) UCL	20.07		
	407		 						

	А		В		С		D	E		F	(Н		I			J		К		L
408								-		etric Dist												
409								Data	арреа	ar to follo	w a Dis	scerni	ble Dis	stribu	tion							
410																						
411									-				·ree U	CLS								
412					050/			% CLT		8.949						95				ap UC		9.358
413						Standa				8.902										p-t UC		9.885
414						5% Hal ebyshe				10.84										ap UC		9.034
415						ebysne ebyshe				10.54							-			Sd) UC Sd) UC		12.13
416				97.:	5% Cn	ebysne	v(iviea	an, Sa)	UCL	14.34					99%	Chei	bysnev	v(ivie	ean, e	sa) UC	L	18.67
417						~~~~~		•••••	~~~~~~	Suggost		to I lo										
418					050	% Adjus	tod O			Suggest 9.152												
419					955	% Adjus	stea G	amma	UCL	9.152									••••••			
420			The		otod I					umptions					atod		ronde			unblog		
421				calcul						data wer											eu .	
422									-	ed using								ode				
423				~~~~~						statistici									•• •••••			•••••
424							ur									ə.						
425					When	a data	set fo			oximate c							F tost		••••••			
426				i						ed upon a												
427						ygcsicc	1000		L base				song b						•••••			
428		Note:	Sugges	stions r	enardi	na the s	select	ion of a	95%	UCLarep	rovided	to heli	n the us	ser to	select	t the r	nost a	nnro	oriat	e 95%	UCI	••••••
429						-				data distri												
430	Но									orld data				-							tisti	cian.
431																						
432																						
433	Соррен	r																	•••••			•••••
434													•••••	•••••		••••••			••••••			••••••
435				·····		······			······	Gener	al Stati	stics						······				••••••
436					Total	Numbe	er of C)bserva	ations	42	T				Num	nber o	of Dist	inct (Obse	rvation	IS	42
437					•••••			•••••							Num	ber o	of Miss	sing (Obse	rvation	IS	0
438								Mini	mum	3.63										Mea		32.94
439								Maxi	mum	145			•••••			••••••			•••••	Media	n	24.7
440					•••••				SD	28.19				•••••			S	Std. E	rror	of Mea	n	4.349
441				·····		Coef	ficient	of Var	iation	0.856	-		••••••	·····				•••••	Sk	ewnes	s	2.442
442											. <u>.</u>					••••••			•••••			
443					•••••			•••••	•••••	Norma	I GOF	lest		•••••		••••••			••••••			••••••
444																						

	A B C D E	F	G H I J K	L
445	Shapiro Wilk Test Statistic	0.725	Shapiro Wilk GOF Test	
446	1% Shapiro Wilk Critical Value	0.922	Data Not Normal at 1% Significance Level	
447	Lilliefors Test Statistic	0.227	Lilliefors GOF Test	
448	1% Lilliefors Critical Value	0.157	Data Not Normal at 1% Significance Level	
449	Data Not	Normal a	t 1% Significance Level	
450				
451	Ass	uming No	mal Distribution	
452	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
453	95% Student's-t UCL	40.26	95% Adjusted-CLT UCL (Chen-1995)	41.85
454			95% Modified-t UCL (Johnson-1978)	40.54
455	······································		•••••••••••••••••••••••••••••••••••••••	
456		Gamma	GOF Test	
457	A-D Test Statistic	0.733	Anderson-Darling Gamma GOF Test	
458	5% A-D Critical Value	0.759	Detected data appear Gamma Distributed at 5% Significance	e Level
459	K-S Test Statistic	0.13	Kolmogorov-Smirnov Gamma GOF Test	
460	5% K-S Critical Value	0.138	Detected data appear Gamma Distributed at 5% Significance	e Level
461	Detected data appe	ar Gamma	a Distributed at 5% Significance Level	
462				
463		Gamma	Statistics	
464	k hat (MLE)	2.042	k star (bias corrected MLE)	1.912
465	Theta hat (MLE)	16.13	Theta star (bias corrected MLE)	17.23
466	nu hat (MLE)	171.5	nu star (bias corrected)	160.6
467	MLE Mean (bias corrected)	32.94	MLE Sd (bias corrected)	23.82
468	······		Approximate Chi Square Value (0.05)	132.3
469	Adjusted Level of Significance	0.0443	Adjusted Chi Square Value	131.4
470	······		······	
471	Assu	uming Gar	nma Distribution	
472	95% Approximate Gamma UCL	39.99	95% Adjusted Gamma UCL	40.27
473		******		
474		Lognorm	al GOF Test	
475	Shapiro Wilk Test Statistic	0.949	Shapiro Wilk Lognormal GOF Test	
476	10% Shapiro Wilk Critical Value	0.951	Data Not Lognormal at 10% Significance Level	
477	Lilliefors Test Statistic	0.0843	Lilliefors Lognormal GOF Test	
478	10% Lilliefors Critical Value	0.124	Data appear Lognormal at 10% Significance Level	
479	Data appear Appr	oximate L	ognormal at 10% Significance Level	
480				
481		Lognorm	al Statistics	

	Α			В		С			D		Е		F		G		Н			I		J		K			L
482											ed Data	÷	.289											gged [3	.23
483											ed Data		.977									SD	of lo	gged [Data	C	.729
484				••••••																					•••••		
485				••••••							Assi	uming	g Log	inor	rmall	Distri	butio	n						•••••	•••••		
486									~~~~~	95%	H-UCL	. 4	1.85					•••••	!	90% (Cheb	yshe\	⁄ (M∖	′UΕ) Ι	JCL	4	4.87
487						95%	, Ch	ebys	hev (l	MVUI	E) UCL	. 50).37	-\$					97	'.5% (Cheb	yshe\	′ (M∖	′UΕ) ι	JCL	5	7.99
488				••••••		99%	o Ch	ebys	hev (l	MVUI	E) UCL	. 72	2.98								•••••						
489												مستنق		ىيىتىۋىر											uuui		
490				••••••						Nor	paran	netric	Distri	ibut	tion F	ree l	JCL	Stati	stics		•••••	•••••		•••••	••••••		
491				••••••						Dat	a appe	ear to	follo	wa	Disc	ərnib	le Di	strib	utior	ו	•••••			•••••	•••••		
492							~~~~~										~~~~~				•••••		•••••				
493				••••••							Nonpa	arame	etric [Distr	ributio	on Fr	ee U	CLs							••••••		
494									95	5% CL	T UCL	. 40	D.1									BCA	Boots	strap l	JCL	4	1.72
495											ap UCL	1	9.95								9			r ap-t l		4	3.6
496							95%	5 Hal	l's Bo	ootstra	ap UCL	46	6.5							95%	Perce	entile	Boots	strap l	JCL	4	0.45
497					ç	90% C) heb	yshe	v(Me	an, S	d) UCL	. 4	5.99						95	% Ch	lebys	hev(N	<i>l</i> ean	, Sd) l	JCL	5	1.9
498					97	.5% C) heb	yshe	v(Me	an, S	d) UCL	. 60).1						99	% Ch	lebys	hev(N	<i>l</i> ean	, Sd) l	JCL	70	6.22
499																											
500												-	-		JCL to												
501											na UCL).27														
502																											
503		Not	e: S	ugges	stions	regar	[.] ding				f a 95%															CL.	
504									•		ata size,								•								
505	H	owe	ver, :	simul	lations	s resu	ılts v	vill n	ot cov	/er all	l Real V	Vorld	data s	sets;	, for a	dditior	nal in:	sight	the u	iser n	nay w	/ant to	o con	sult a	statis	ticia	n.
506																											
	Seleni	ium																									
508				••••••																					••••••		
509															tatisti												
510					~~~~~	Tot	al Ni	umbe	er of (Obser	vations	42	2					•••••	Nı	umbei	r of D	istino	t Ob	servat	ions	2	2
511								٨	lumb	er of l	Detects	20)								Nur	nber	of No	n-Det	ects	2	2
512			•••••	••••••		1	۱um	ber o	of Dis	stinct I	Detects	18	3						Ν	umbe	er of E	Distin	ct No	n-Det	ects	4	
513											Detect	t 0	.27											on-De	etect	C	0.2
514				••••••					Maxi		Detect	i 3	.23									axim		on-De	etect	C	.38
515											Detects	0	.556								F	Perce	nt No	n-Det	ects	5	2.38%
516				• ~~~~~					N	lean l	Detects	0	.964	~~~~									S	D Det	ects	C	.746
517		•••••		••••••							Detects	0	.66	. <u>.</u>			•••••				•••••			V Det	ects	C	.774
518				••••••				ç	Skewi	ness l	Detects	1	.77								•••••			is Det	ects	3	8.576
																									i		

	A B C D E	F	G H I	J K	L
519	Mean of Logged Detects	s -0.276		SD of Logged Detects	0.695
520					
521			st on Detects Only		
522	Shapiro Wilk Test Statistic			Vilk GOF Test	·····
523	1% Shapiro Wilk Critical Value			al at 1% Significance Lev	el
524	Lilliefors Test Statistic			s GOF Test	
525	1% Lilliefors Critical Value		Detected Data appear Norr	~	
526		ear Approx	mate Normal at 1% Significance	8 L9v9i	
527	Koplon Molor (AI) Statetor	ulna Norm	al Critical Values and other Non		
528					
529	KM Mear		KM	Standard Error of Mean	0.0994
530	90KM SD			95% KM (BCA) UCL	0.738
531	95% KM (t) UCL		, , , , , , , , , , , , , , , , , , ,	ercentile Bootstrap) UCL	0.733
532	95% KM (z) UCL	0.733	9	95% KM Bootstrap t UCL	0.808
533	90% KM Chebyshev UCI			5% KM Chebyshev UCL	1.003
534	97.5% KM Chebyshev UCI	1.19	99	9% KM Chebyshev UCL	1.558
535					
536	Gamma GO	F Tests on I	Detected Observations Only		
537	A-D Test Statistic			Parling GOF Test	
538	5% A-D Critical Value	e 0.751	Detected data appear Gamma D	istributed at 5% Significar	nce Level
539	K-S Test Statistic	0.151	Kolmogorov	v-Smirnov GOF	
540	5% K-S Critical Value	e 0.196	Detected data appear Gamma D	istributed at 5% Significar	nce Level
541	Detected data app	bear Gamm	a Distributed at 5% Significance	Level	
542					
543	Gamma	a Statistics o	n Detected Data Only		
544	k hat (MLE)) 2.246	k st	tar (bias corrected MLE)	1.943
545	Theta hat (MLE)		Theta st	tar (bias corrected MLE)	0.496
546	nu hat (MLE)) 89.84		nu star (bias corrected)	77.7
547	Mean (detects)) 0.964			
548					
549			using Imputed Non-Detects		
550	GROS may not be used when data so	et has > 50%		at multiple DLs	
551		small such as	s < 1.0, especially when the sample	size is small (e.g., <15-2	0)
552			yield incorrect values of UCLs and	BTVs	
553	•		n the sample size is small.		
554	For gamma distributed detected data, BTVs a			bution on KM estimates	
555	Minimum	n 0.01		Mean	0.465

	A B C D E	F	G H I J K	L
556	Maximum		Median	0.0244
557	SD	0.7	CV	1.505
558	k hat (MLE)	0.38	k star (bias corrected MLE)	0.369
559	Theta hat (MLE)	1.222	Theta star (bias corrected MLE)	1.26
560	nu hat (MLE)	31.94	nu star (bias corrected)	30.99
561	Adjusted Level of Significance (β)	0.0443		
562	Approximate Chi Square Value (30.99, α)	19.27	Adjusted Chi Square Value (30.99, β)	18.94
563	95% Gamma Approximate UCL	0.747	95% Gamma Adjusted UCL	0.76
564		••••••	•••••••••••••••••••••••••••••••••••••••	
565	Estimates of G	amma Pa	rameters using KM Estimates	
566	Mean (KM)	0.57	SD (KM)	0.627
567	Variance (KM)	0.393	SE of Mean (KM)	0.0994
568	k hat (KM)	0.826	k star (KM)	0.783
569	nu hat (KM)	69.35	nu star (KM)	65.73
570	theta hat (KM)	0.69	theta star (KM)	0.728
571	80% gamma percentile (KM)	0.932	90% gamma percentile (KM)	1.392
572	95% gamma percentile (KM)	1.863	99% gamma percentile (KM)	2.975
573			۶	
574	Gamm	a Kaplan-I	Meier (KM) Statistics	
575	Approximate Chi Square Value (65.73, α)	48.07	Adjusted Chi Square Value (65.73, β)	47.54
576	95% KM Approximate Gamma UCL	0.779	95% KM Adjusted Gamma UCL	0.788
577			λ	
578	Lognormal G	OF Test or	n Detected Observations Only	
579	Shapiro Wilk Test Statistic	0.954	Shapiro Wilk GOF Test	
580	10% Shapiro Wilk Critical Value	0.92	Detected Data appear Lognormal at 10% Significance	Level
581	Lilliefors Test Statistic	0.135	Lilliefors GOF Test	
582	10% Lilliefors Critical Value	0.176	Detected Data appear Lognormal at 10% Significance	Level
583	Detected Data a	ippear Log	normal at 10% Significance Level	
584				
585	Lognormal R	OS Statistic	s Using Imputed Non-Detects	
	Mean in Original Scale	0.529	Mean in Log Scale	-1.258
586 587	SD in Original Scale	0.66	SD in Log Scale	1.137
	95% t UCL (assumes normality of ROS data)	0.701	95% Percentile Bootstrap UCL	0.697
588	95% BCA Bootstrap UCL	0.723	95% Bootstrap t UCL	0.771
589	95% H-UCL (Log ROS)	0.847		
590			l	
591	Statistics using KM estimate	s on Logg	ed Data and Assuming Lognormal Distribution	
592				

	Α			В		С		D		Е	F		G		Н			I		J		K		L	
593										n (logged	ŕ											Geo M		0.387	
594) (logged							95	5% C				(KM-L		2.149	1
595					KM	Standa	ard Ei			n (logged											`	KM -L	<i>,</i>	0.696	;
596) (logged							95	5% C	ritica	нν	alue ((KM-L	.og)	2.149	
597					KM	Standa	ard Ei	rror	of Mear	n (logged) 0.1	28													
598																									
599											DI	./2 \$	Statistic	5											
600						DL	/2 No									ا ا	DL/2	Log	j-Tra						
601							М			inal Scal			ļ									Log So		-1.141	
602								~~~~~	-	inal Scal												Log So	1	0.977	
603										normality												Stat L	JCL	0.735	
604						DL/	'2 is r	nota	recor	nmende	od meth	od,	provide	od for	comp	ariso	onse	and I	histor	rical	reas	ons			
605																									
606										onparai															
607						D	etec	tedi	Data a	ppear A	pproxin	nate	Norma	al Dis	ribute	əd at	1%	Signi	ifican	ice L	evel				
608		~~~~~	~~~~																						~~~
609													d UCL 1	to Use	•										
610								9	95% KN	M (t) UC	L 0.7	37													
611																									
612										ws an ap															
613						it is s	ugges	sted 1	o use a	a UCL ba	sed upor	n a di	istributio	on pas	sing b	oth G	OF te	ests i	in Pro	UCL					
614		~~~~~	~~~~																						~~~
615		Not								n of a 95%														CL.	
616										data size							-								
617	H	owe\	/er,	simu	latior	ns resu	lts wi	ill not	cover	all Real '	Worldda	ata s	ets; for a	additio	nal ins	sight t	he us	ser m	nay w	ant to	cons	sult a s	statis	tician.	
618																									
619																									
620	Vanad	ium	·····	~~~~~						•••••						~~~~~	~~~~~								~~~
621														4											
622							1.51					iera	I Statist	ICS											
623						I Ota	ai inur	nder	or Ubs	servation	s 42											ervati		41	
624													ļ				Nur	mber	ot Mi	ssinę	j Ubs	ervati		0	
625										Minimun			ļ										ean	17.43	
626		~~~~~	~~~~						N	Maximun			ļ								. <u></u>		dian	7.65	
627										SE			ļ									r of M		2.777	
628							С	Coeffi	cient of	f Variatio	n 1.0	33	<u>.</u>								S	Skewn	ess	0.817	
629																									

	A B C D E	F	G H I J K	L
630			GOF Test	
631	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
632	1% Shapiro Wilk Critical Value	0.922	Data Not Normal at 1% Significance Level	
633	Lilliefors Test Statistic	0.265	Lilliefors GOF Test	
634	1% Lilliefors Critical Value	0.157	Data Not Normal at 1% Significance Level	
635	Data No	t Normal a	t 1% Significance Level	
636				
637	Ass	uming No	rmal Distribution	
638	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
639	95% Student's-t UCL	22.1	95% Adjusted-CLT UCL (Chen-1995)	22.37
640			95% Modified-t UCL (Johnson-1978)	22.16
641			£	
642		Gamma	GOF Test	
643	A-D Test Statistic		Anderson-Darling Gamma GOF Test	
644	5% A-D Critical Value	0.783	Data Not Gamma Distributed at 5% Significance Lev	vel
645	K-S Test Statistic	0.193	Kolmogorov-Smirnov Gamma GOF Test	
646	5% K-S Critical Value	0.141	Data Not Gamma Distributed at 5% Significance Lev	vel
647	Data Not Gam	ma Distrib	uted at 5% Significance Level	
648				
649			Statistics	
650	k hat (MLE)	0.881	k star (bias corrected MLE)	0.834
651	Theta hat (MLE)	19.77	Theta star (bias corrected MLE)	20.89
652	nu hat (MLE)	74.03	nu star (bias corrected)	70.07
653	MLE Mean (bias corrected)	17.43	MLE Sd (bias corrected)	19.08
654			Approximate Chi Square Value (0.05)	51.8
655	Adjusted Level of Significance	0.0443	Adjusted Chi Square Value	51.24
656			· · · · · · · · · · · · · · · · · · ·	
657	Ass	uming Ga	mma Distribution	
658	95% Approximate Gamma UCL	23.57	95% Adjusted Gamma UCL	23.83
659			······································	
660		Lognorm	al GOF Test	
661	Shapiro Wilk Test Statistic	0.85	Shapiro Wilk Lognormal GOF Test	
662	10% Shapiro Wilk Critical Value	0.951	Data Not Lognormal at 10% Significance Level	
663	Lilliefors Test Statistic	0.161	Lilliefors Lognormal GOF Test	
664	10% Lilliefors Critical Value	0.124	Data Not Lognormal at 10% Significance Level	
665	Data Not L	.ognorma	at 10% Significance Level	
666				

	A		В		С		D		E	F		G		Н		I		J		Κ		L
667										Lognor	mal S	tatistic	S									
668						Minim														gged D		2.193
669					Ν	Maxim	um of I	Logge	d Data	4.009								SD	oflo	gged D	ata	1.245
670										<u></u>												
671			*****						Assu	iming Log	jnorn	n al Dis	tribut	ion	~~~~			~~~~~				
672							!	95% ⊦	I-UCL	32.52						90%	% Ch	ebyshev	/ (M∨	′UE) U	ICL	32.3
673					95% (Chebys	shev (N	MVUE) UCL	38.39		•••••	•••••			97.5%	% Ch	ebyshev	/ (M∨	′UE) U	ICL	46.84
674					99% (Chebys	shev (N	MVUE) UCL	63.44												
675							••••••			i			•••••									•••••
676							•••••	Nong	param	etric Dist	ibutic	on Free	e UC	L Stat	tistic	` S						•••••
677					••••••			Da	ta do i	not follow	a Dis	cernib	le Di	stribu	ltior	1			~~~~~	•••••	~~~~~	
678																						
679								٢	Nonpa	rametric	Distril	oution	Free	UCL	S							
680									T UCL	21.99							95	% BCA	Boots	strap U	ICL	22.4
681					95%	Standa	ard Bo	otstra	p UCL	21.86								95% B	Bootst	rap-t U	ICL	22.3
682					9	5% Ha	ll's Bo	otstra	p UCL	21.99						959	% Pe	centile	Boots	strap U	ICL	21.88
				9	0% Ch	ebyshe	ev(Me	an, Sd) UCL	25.76					(95% (Cheb	yshev(N	Mean	, Sd) U	ICL	29.53
683				97.	5% Ch	ebyshe	ev(Me	an, Sd) UCL	34.77						99% (Cheb	yshev(N	Mean	, Sd) U	ICL	45.06
684																					i	
685							••••••			Suggeste												
686						95	% Stud	dent's-	t UCL	22.1	Ĩ										Ĩ	
687							•••••														i	
688			The	calcu	lated l	UCLs	are ba	ased (on ass	sumptions	s that	the da	ta we	10 01	ollec	ted i	in a r	andon	n and	lunbi	asec	l manner
689							Pleas	se vei	rify the	data wer	e col	lected	from	rand	om	loca	tions	•				
690						lfthe	data	were	collec	ted using	judg	mental	l or o	ther r	non	-ran	dom	metho	ds,			
691										a statistici												
692							•••••															
693 604		Note	: Sugges	stions	regard	ing the	select	tion of	a 95%	UCL are p	orovide	ed to he	lp the	user	to se	elect	the m	iost app	propria	ate 95%	% UC	CL.
694			Recom	mend	ations	are bas	sed up	on dat	a size,	data distri	oution	, and sk	kewne	ss us	ingi	result	ts fro	n simu	lation	studie	s.	
695	H	oweve	er, simul	ations	result	s will n	iot cov	ver all	Real W	Vorld data	sets; f	or addit	tional	insigh	nt the	eusei	r may	v want to	o con:	sult a s	statis	tician.
696																						
697																						
	Zinc						••••••													•••••		
699																						
700			••••••			·····				Gener	al Sta	tistics						~~~~~	•••••			••••••
701					Total	Numb	er of C	Observ	vations	42	1				I	Numl	ber of	Disting	ct Obs	servati	ons	40
702																		Missin			ons	0
703																			-			

	A B C D E	F	G H I J K L
704	Minimum	4.1	Mean 54.16
705	Maximum	768	Median 30.65
706		115.3	Std. Error of Mean 17.79
707	Coefficient of Variation	2.129	Skewness 6.059
708			
709			GOF Test
710	Shapiro Wilk Test Statistic	0.317	Shapiro Wilk GOF Test
711	1% Shapiro Wilk Critical Value	0.922	Data Not Normal at 1% Significance Level
712	Lilliefors Test Statistic	0.342	Lilliefors GOF Test
713	1% Lilliefors Critical Value	0.157	Data Not Normal at 1% Significance Level
714	Data Not	t Normal a	t 1% Significance Level
715			
716	Ass	uming No	rmal Distribution
717	95% Normal UCL		95% UCLs (Adjusted for Skewness)
718	95% Student's-t UCL	84.1	95% Adjusted-CLT UCL (Chen-1995) 101.2
719			95% Modified-t UCL (Johnson-1978) 86.87
720			h
721		Gamma	GOF Test
722	A-D Test Statistic	2.042	Anderson-Darling Gamma GOF Test
723	5% A-D Critical Value	0.778	Data Not Gamma Distributed at 5% Significance Level
724	K-S Test Statistic	0.183	Kolmogorov-Smirnov Gamma GOF Test
725	5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Level
726		ma Distrib	uted at 5% Significance Level
727			
728		Gamma	Statistics
729	k hat (MLE)	1.016	k star (bias corrected MLE) 0.959
730	Theta hat (MLE)	53.31	Theta star (bias corrected MLE) 56.46
731	nu hat (MLE)	85.34	nu star (bias corrected) 80.58
732	MLE Mean (bias corrected)	54.16	MLE Sd (bias corrected) 55.3
733			Approximate Chi Square Value (0.05) 60.89
734	Adjusted Level of Significance	0.0443	Adjusted Chi Square Value 60.28
735			۵
736	Ass	uming Gar	nma Distribution
737	95% Approximate Gamma UCL	71.66	95% Adjusted Gamma UCL 72.39
738			haannaannaannaannaannaannaannaannaannaa
739		Lognorm	al GOF Test
740	Shapiro Wilk Test Statistic	0.911	Shapiro Wilk Lognormal GOF Test
740			

	A B C D E	F	G	Н		J K	L
741	10% Shapiro Wilk Critical Valu		D			Significance Leve	9
742	Lilliefors Test Statisti			Lilliefo	ors Lognorm	al GOF Test	
743	10% Lilliefors Critical Valu	1	ļ			Significance Lev	/el
744	Data appear Ap	proximate L	ognormal at	10% Signific	ance Level		
745							
746		-	al Statistics				
747	Minimum of Logged Dat	a 1.411			Me	ean of logged Dat	a 3.425
748	Maximum of Logged Dat	a 6.644				SD of logged Dat	a 0.935
749							
750			normal Distril	bution			
751	95% H-UC				-	hev (MVUE) UC	
752	95% Chebyshev (MVUE) UC		S S	9	7.5% Chebys	hev (MVUE) UC	L 95.4
753	99% Chebyshev (MVUE) UC	L 124.2					
754							
755			bution Free L				
756	Data app	ear to follow	v a Discernib	le Distributio	n		
757							
758	-		istribution Fr	ee UCLs			
759	95% CLT UC					CA Bootstrap UC	
760	95% Standard Bootstrap UC		5 5			6 Bootstrap-t UC	
761	95% Hall's Bootstrap UC		S 			ile Bootstrap UC	
762	90% Chebyshev(Mean, Sd) UC		Ş		-	w(Mean, Sd) UC	
763	97.5% Chebyshev(Mean, Sd) UC	L 165.3		99	9% Chebyshe	w(Mean, Sd) UC	L 231.2
764		0					
765			d UCL to Use				·;·····
766	95% H-UC	L 66.38	§				
767	The calculated UCLs are based on a		that the data			om ond unblog	od monnor
768	Please verify th	-					ed manner.
769	If the data were colle					hode	
770			n to correctly				
771							
772	Note: Suggestions regarding the selection of a 95%	% UCL are pr	ovided to belo	the user to sal	lect the most :	annronriate 95% I	ICI
773	Recommendations are based upon data size						
774	However, simulations results will not cover all Real						listician
775		vvoriu uala Se	eis, iur auuriior	a ກອງກະບາດ	user may war	it to consult a sta	uəucidii.

	A B C D E	F		L
1		SUCS TOT UN	ncensored Full Data Sets	
2				••••••
3	User Selected Options			
4	Date/Time of Computation ProUCL 5.2 2024-02-07			
5	From File WorkSheet_a.xls			
6	Full Precision OFF			
7	Confidence Coefficient 95%			
8	Number of Bootstrap Operations 2000			
9				
10				
11	Antimony - University Footprint			
12			I Chatlalian	••••••
13	Tatal Number of Observations		Il Statistics Number of Distinct Observations	10
14	Total Number of Observations	16		16
15	Michaeler av	4 4 4	Number of Missing Observations	1
16	Minimum		Mean	10.26
17	Maximum		Median	6.835 2.698
18	SD		Std. Error of Mean	•••••••••••
19	Coefficient of Variation	1.052	Skewness	1.426
20		Normal	GOF Test	••••••
21	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
22			Data Not Normal at 1% Significance Level	
23	1% Shapiro Wilk Critical Value Lilliefors Test Statistic		Lilliefors GOF Test	
24	1% Lilliefors Critical Value		Data Not Normal at 1% Significance Level	
25			at 1% Significance Level	
26				••••••
27	Ass	umina No	rmal Distribution	
28	95% Normal UCL	•	95% UCLs (Adjusted for Skewness)	••••••
29 20	95% Student's-t UCL	14.99	95% Adjusted-CLT UCL (Chen-1995)	15.73
30			95% Modified-t UCL (Johnson-1978)	15.15
31 32			· · · · · · · · · · · · · · · · · · ·	
32 33		Gamma	GOF Test	••••••
33 34	A-D Test Statistic	0.474	Anderson-Darling Gamma GOF Test	
35	5% A-D Critical Value	0.761	Detected data appear Gamma Distributed at 5% Significanc	e Level
36	K-S Test Statistic	0.172	Kolmogorov-Smirnov Gamma GOF Test	
37	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significanc	e Level
38	Detected data app	ear Gamma	a Distributed at 5% Significance Level	
39				
40		Gamma	a Statistics	
41	k hat (MLE)	1.109	k star (bias corrected MLE)	0.943
42	Theta hat (MLE)	9.253	Theta star (bias corrected MLE)	10.89
43	nu hat (MLE)	35.49	nu star (bias corrected)	30.17
44	MLE Mean (bias corrected)		MLE Sd (bias corrected)	10.57
45			Approximate Chi Square Value (0.05)	18.62
46	Adjusted Level of Significance	0.0335	Adjusted Chi Square Value	17.6
47				
48	Ass	uming Gar	mma Distribution	
49	95% Approximate Gamma UCL	16.62	95% Adjusted Gamma UCL	17.59
50				

	A B C D E	F	G	Н	I	J	K	L						
51		Lognorm	al GOF Test											
52	Shapiro Wilk Test Statistic	0.958		•		ognormal	GOF Test							
53	10% Shapiro Wilk Critical Value	0.906	Data				nificance Lev	el						
54	Lilliefors Test Statistic	0.108				normal G								
55	10% Lilliefors Critical Value	0.196					nificance Lev	el						
56	Data appear	Lognorn	nal at 10% Sig	nificance	Level									
57														
58		Lognorm	al Statistics		~~~~~~									
59	Minimum of Logged Data	0.131			•••••	Meano	of logged Data	n 1.814						
60	Maximum of Logged Data	3.584				SD o	of logged Data	n 1.074						
61			A		•••••			A						
62		• •	normal Distrib	ution										
63	95% H-UCL	23.87			90% C	hebyshev ((MVUE) UCL	19.63						
64	95% Chebyshev (MVUE) UCL	23.82			97.5% C	hebyshev ((MVUE) UCL	29.64						
65	99% Chebyshev (MVUE) UCL	41.08						•						
66			٤					.i						
67	Nonparame	tric Distril	oution Free U	CL Statisti	CS			••••••						
68	Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution													
69		Data appear to follow a Discernible Distribution												
70	Nonpar	ametric D	istribution Fre	e UCLs										
71	95% CLT UCL	14.7			ç	5% BCA B	ootstrap UCL	15.53						
72	95% Standard Bootstrap UCL	14.65				95% Bo	otstrap-t UCL	17.17						
72	95% Hall's Bootstrap UCL	14.92			95% F	Percentile B	ootstrap UCL	15.01						
74	90% Chebyshev(Mean, Sd) UCL	18.36			95% Ch	ebyshev(M	ean, Sd) UCL	22.02						
75	97.5% Chebyshev(Mean, Sd) UCL	27.11			99% Ch	ebyshev(M	ean, Sd) UCL	37.11						
76	i.		8					.i						
70	Ę	Suggeste	UCL to Use		•••••			••••••						
78	95% Adjusted Gamma UCL	17.59												
70	à.		8		•••••			i						
80	The calculated UCLs are based on assu	Imptions	that the data v	vere colle	cted in a	n random :	and unbiase	d manner.						
81	Please verify the o	data were	collected from	n random	locatio	15.								
82	If the data were collecte	od using j	udgmental or	other nor	n-randoi	n method	8,							
83	then contact a													
оз 84														
84 85	Note: Suggestions regarding the selection of a 95% L	JCL are pr	ovided to help th	ne user to s	elect the	most appro	opriate 95% L	JCL.						
	Recommendations are based upon data size, d	· · · · · ·	·····											
86	However, simulations results will not cover all Real Wo							istician.						
87						ay mane to								

	A B C D E	F	G H I J K	L				
1	UCL State	stics for Un	censored Full Data Sets					
2								
3	User Selected Options							
4	Date/Time of Computation ProUCL 5.2 2024-02-06							
5	From File WorkSheet.xls							
6	Full Precision OFF							
7	Confidence Coefficient 95%							
8	Number of Bootstrap Operations 2000							
9								
10	Anna a la Linduca ación da Annala A							
11	Arsenic - University Footprint							
12		Ganara						
13		16	I Statistics Number of Distinct Observations	16				
14	Total Number of Observations	0		16				
15	Minimum	27.4	Number of Missing Observations Mean 1	19.7				
16	Maximum			98.4				
17		120.2		30.05				
18	Coefficient of Variation		· ·					
19		1.004	Skewness	2.124				
20		Normal	GOF Test					
21	Shapiro Wilk Test Statistic	0.727	Shapiro Wilk GOF Test					
22	1% Shapiro Wilk Critical Value	0.727	Data Not Normal at 1% Significance Level					
23	Lilliefors Test Statistic		Lillefors GOF Test					
24	1% Lilliefors Critical Value		Data Not Normal at 1% Significance Level					
25			t 1% Significance Level					
26								
27	Ass	umina No	rmal Distribution					
28	95% Normal UCL		95% UCLs (Adjusted for Skewness)					
29	95% Student's-t UCL	172.4		86.2				
30				75				
31								
32 33		Gamma	GOF Test					
33 34	A-D Test Statistic	0.616	Anderson-Darling Gamma GOF Test					
34 35	5% A-D Critical Value	0.755	Detected data appear Gamma Distributed at 5% Significance	e Level				
36	K-S Test Statistic	0.158	Kolmogorov-Smirnov Gamma GOF Test					
37	5% K-S Critical Value	0.219	Detected data appear Gamma Distributed at 5% Significance	e Level				
38	Detected data appe	ar Gamm	a Distributed at 5% Significance Level					
39								
40		Gamma	Statistics					
41	k hat (MLE)	1.521	k star (bias corrected MLE)	1.278				
42	Theta hat (MLE)	78.67	· · · · · · · · · · · · · · · · · · ·	93.66				
43	nu hat (MLE)		nu star (bias corrected)	40.89				
44	MLE Mean (bias corrected)			05.9				
45			Approximate Chi Square Value (0.05)	27.24				
46	Adjusted Level of Significance	0.0335	Adjusted Chi Square Value	25.97				
47								
48	Ass	-	nma Distribution					
49	95% Approximate Gamma UCL		95% Adjusted Gamma UCL 1	88.4				
-								
50								

51 52	Shapiro Wilk Test Statistic 10% Shapiro Wilk Critical Value	0.933	al GOF Test Shapiro Wilk Lognormal GOF Test	
52				
	10% Shapiro Wilk Critical Value		Dele en en el en en el el 100/ O's s'Gereser les	
53		0.906	Data appear Lognormal at 10% Significance Leve	
54	Lilliefors Test Statistic	0.14	Lilliefors Lognormal GOF Test	
55	10% Lilliefors Critical Value		Data appear Lognormal at 10% Significance Leve	
56		Lognom	al at 10% Significance Level	
57		Lognorm	al Statistics	
58	Minimum of Logged Data	3.311	Mean of logged Data	4.422
59	Maximum of Logged Data		SD of logged Data	
60				0.000
61	Assu	mina Loar	normal Distribution	
62 63	95% H-UCL		90% Chebyshev (MVUE) UCL	196.6
63 64	95% Chebyshev (MVUE) UCL	233	97.5% Chebyshev (MVUE) UCL	
65	99% Chebyshev (MVUE) UCL	382.6		
66				
67			oution Free UCL Statistics	
68			a Discernible Distribution	
69				
70	Nonpar	ametric D	istribution Free UCLs	
71	95% CLT UCL		95% BCA Bootstrap UCL	186.6
72	95% Standard Bootstrap UCL	166.9	95% Bootstrap-t UCL	
73	95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL	
74	90% Chebyshev(Mean, Sd) UCL	209.8	95% Chebyshev(Mean, Sd) UCL	250.7
75	97.5% Chebyshev(Mean, Sd) UCL	307.4	99% Chebyshev(Mean, Sd) UCL	418.7
76				
77			I UCL to Use	
78	95% Adjusted Gamma UCL	188.4		
79				
80			hat the data were collected in a random and unbiased	a manner.
81	-		collected from random locations. udgmental or other non-random methods,	
82			n to correctly calculate UCLs.	
83				
84	Note: Suggestions regarding the selection of a 95% l	JCL are pro	ovided to help the user to select the most appropriate 95% U(CL.
85 96			ution, and skewness using results from simulation studies.	-
86 87				stician.
88				
89				
	enic - Site Wide without Old Mine Road Data			
91				
92		Genera	l Statistics	
93	Total Number of Observations	37	Number of Distinct Observations	37
94			Number of Missing Observations	1
95	Minimum	9.54	Mean	125.7
96	Maximum		Median	46.7
97		214.3	Std. Error of Mean	35.23
98	Coefficient of Variation	1.705	Skewness	3.802
99				
100		Normal	GOF Test	

	A B C D E	F	G H I J K	L
101	Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
102	1% Shapiro Wilk Critical Value	0.814	Data Not Normal at 1% Significance Level	
103	Lilliefors Test Statistic	0.294	Lillefors GOF Test	
104	1% Lilliefors Critical Value		Data Not Normal at 1% Significance Level	
105	Data Not	t Normal a	t 1% Significance Level	
106				
107	Ass	uming No	rmal Distribution	
108	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
109	95% Student's-t UCL	185.2	95% Adjusted-CLT UCL (Chen-1995)	207.2
110			95% Modified-t UCL (Johnson-1978)	188.9
111			~~~~~~	
112			GOF Test	
113	A-D Test Statistic	1.633	Anderson-Darling Gamma GOF Test	
114	5% A-D Critical Value	0.787	Data Not Gamma Distributed at 5% Significance Le	vel
115	K-S Test Statistic	0.188	Kolmogorov-Smirnov Gamma GOF Test	
116	5% K-S Critical Value	0.151	Data Not Gamma Distributed at 5% Significance Le	vel
117		ma Distrib	uted at 5% Significance Level	
118		••••••		
119		Gamma	Statistics	
120	k hat (MLE)	0.782	k star (bias corrected MLE)	0.737
120	Theta hat (MLE)	160.7	Theta star (bias corrected MLE)	170.6
121	nu hat (MLE)		nu star (bias corrected)	54.54
122	MLE Mean (bias corrected)	125.7	MLE Sd (bias corrected)	146.4
123			Approximate Chi Square Value (0.05)	38.57
124	Adjusted Level of Significance	0.0431	Adjusted Chi Square Value	37.99
125	,		1	
	Ass	uming Gar	mma Distribution	
127	95% Approximate Gamma UCL	177.8	95% Adjusted Gamma UCL	180.5
128				
129		Lognorm	al GOF Test	
130	Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
131	10% Shapiro Wilk Critical Value	0.946	Data appear Lognormal at 10% Significance Leve	
132	Lilliefors Test Statistic	0.113	Lilliefors Lognormal GOF Test	
133	10% Lilliefors Critical Value	0.132	Data appear Lognormal at 10% Significance Leve	
134	Data appea		nal at 10% Significance Level	
135				
136		Loanorm	al Statistics	
137	Minimum of Logged Data		Mean of logged Data:	4.073
138	Maximum of Logged Data		SD of logged Data	1.17
139				
140	Δεει	mina Loa	normal Distribution	
141	95% H-UCL		90% Chebyshev (MVUE) UCL	191 7
142	95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	
143	99% Chebyshev (MVUE) UCL			270.0
144		574	L	
145	Nonzerem	atric Dietril	bution Free UCL Statistics	
146	-		v a Discernible Distribution	
147				
148	N	romotrio P		
149	•			200 5
150	95% CLT UCL	183.7	95% BCA Bootstrap UCL	209.5

	А	В	С	D	E	F	G	Н	I	J	K	L
151			95%	standard	Bootstrap UCL	181.5				95% Boo	otstrap-t UCL	246.2
152			9	5% Hall's	Bootstrap UCL	397.1			95% P	ercentile Bo	ootstrap UCL	184.7
153			90% Ch	ebyshev(N	/lean, Sd) UCL	231.4			95% Che	byshev(Me	an, Sd) UCL	279.3
154			97.5% Ch	ebyshev(N	/lean, Sd) UCL	345.7			99% Che	byshev(Me	an, Sd) UCL	476.2
155												
156						Suggeste	d UCL to U	50				
157					95% H-UCL	193						
158												
159		The c	calculated	UCLs are	based on as	sumptions	that the da	ta were col	lected in a	random a	nd unbiase	d manner.
160				Ple	ase verify the	o data were	collected	from rando	m location	IS.		
161				lf the dat	a were collec	ted using j	udgmental	or other n	on-randor	n method s	b ,	
162					then contact	a statisticia	n to correc	tly calculat	e UCLs.			
163												
164	١	Note: Sugges	tions regard	ing the sel	ection of a 95%	UCL are pr	ovided to he	lp the user to	o select the	most appro	priate 95% U	CL.
165		Recom	mendations	are based	upon data size,	data distrib	ution, and sk	ewness usi	ng results fr	om simulat	ion studies.	
166	Hov	vever, simula	ations result	s will not c	over all Real V	Vorld data se	ets; for addit	ional insight	the user ma	ay want to c	consult a statis	stician.

	A B C	D E	F	G H I J K	L				
1		UCL Statis	tics for Und	censored Full Data Sets					
2		- 8			•••••				
3	User Selected Options Date/Time of Computation	5	12.27.54 01						
4			12.37.34 Pr	vi					
5	Full Precision	. ŧ							
6	Confidence Coefficient								
7	Number of Bootstrap Operations	2000							
8		2000			••••••				
9									
10 11	Boron - Site Wide without Old N	Mine Road Data			••••••				
11									
12			General	Statistics					
13	Total I	Number of Observations	16	Number of Distinct Observations	15				
14				Number of Missing Observations	22				
16		Minimum	6.2	Mean	16.34				
17		Maximum	32.5	Median	13.2				
17		SD	8.485	Std. Error of Mean	2.121				
19		Coefficient of Variation	0.519	Skewness	0.582				
20		······	8						
21				GOF Test					
22	Sh	napiro Wilk Test Statistic	0.894	Shapiro Wilk GOF Test					
23	1% Sha	apiro Wilk Critical Value	0.844	Data appear Normal at 1% Significance Level					
24		Lilliefors Test Statistic	0.195	Lilliefors GOF Test	~~~~~~~				
25	1%	% Lilliefors Critical Value	0.248	Data appear Normal at 1% Significance Level					
26		Data appe	ar Normal	at 1% Significance Level					
27									
28			uming Nor	mal Distribution					
28 29	95% N	Iormal UCL		95% UCLs (Adjusted for Skewness)					
	95% N		uming Nor 20.06	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	20.16				
29	95% N	Iormal UCL		95% UCLs (Adjusted for Skewness)	20.16 20.11				
29 30	95% N	Iormal UCL	20.06	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)					
29 30 31 32 33	95% N	lormal UCL 95% Student's-t UCL	20.06	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test					
29 30 31 32 33 34	95% N	A-D Test Statistic	20.06 Gamma 0.599	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test	20.11				
29 30 31 32 33 34 35	95% N	A-D Test Statistic 5% A-D Critical Value	20.06 Gamma 0.599 0.742	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan	20.11				
29 30 31 32 33 34 35 36	95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	20.06 Gamma 0.599 0.742 0.186	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test	20.11 ce Level				
29 30 31 32 33 34 35 36 37	95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	20.06 Gamma 0.599 0.742 0.186 0.216	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan	20.11 ce Level				
29 30 31 32 33 34 35 36 37 38	95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	20.06 Gamma 0.599 0.742 0.186 0.216	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan	20.11 ce Level				
 29 30 31 32 33 34 35 36 37 38 39 	95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	20.06 Gamma 0.599 0.742 0.186 0.216	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan	20.11 ce Level				
 29 30 31 32 33 34 35 36 37 38 39 40 	95% N	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	20.06 Gamma 0.599 0.742 0.186 0.216 ar Gamma 4.029	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Distributed at 5% Significance Level Statistics k star (bias corrected MLE):	20.11 ce Level				
 29 30 31 32 33 34 35 36 37 38 39 40 41 		Iormal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appe k hat (MLE) Theta hat (MLE)	20.06 Camma 0.599 0.742 0.186 0.216 ar Gamma 4.029 4.055	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Statistics k star (bias corrected MLE)	20.11 ce Level				
 29 30 31 32 33 34 35 36 37 38 39 40 41 42 		Iormal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appe k hat (MLE)	20.06 Gamma 0.599 0.742 0.186 0.216 ar Gamma 4.029 4.055	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE)	20.11 ice Level ice Level 3.315				
 29 30 31 32 33 34 35 36 37 38 39 40 41 		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appe k hat (MLE)	20.06 Gamma 0.599 0.742 0.186 0.216 ar Gamma 4.029 4.055	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Notes and Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Notes the star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	20.11 ce Level ce Level 3.315 4.928				
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43		Iormal UCL 95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appe k hat (MLE) Theta hat (MLE) nu hat (MLE)	20.06 Gamma 0.599 0.742 0.186 0.216 ar Gamma 4.029 4.055 128.9 16.34	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Distributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	20.11 ce Level ce Level 3.315 4.928 106.1				
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44		A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appe k hat (MLE) Theta hat (MLE) nu hat (MLE)	20.06 Gamma 0.599 0.742 0.186 0.216 ar Gamma 4.029 4.055 128.9 16.34	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Distributed at 5% Significance Level Statistics k star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	20.11 ice Level 3.315 4.928 106.1 8.973				
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45		A-D Test Statistic A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appe k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected)	20.06 Gamma 0.599 0.742 0.186 0.216 ar Gamma 4.029 4.025 128.9 16.34	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Distributed at 5% Significance Level Statistics k star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	20.11 ce Level 3.315 4.928 106.1 8.973 83.31				
 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 		A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appe k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected) sted Level of Significance	20.06 Gamma 0.599 0.742 0.186 0.216 ar Gamma 4.029 4.055 128.9 16.34 0.0335 uming Gan	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Distributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	20.11 ce Level 3.315 4.928 106.1 8.973 83.31				
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	ML	A-D Test Statistic 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appe k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected) sted Level of Significance	20.06 Gamma 0.599 0.742 0.186 0.216 ar Gamma 4.029 4.055 128.9 16.34 0.0335 uming Gan 20.8	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Distributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	20.11 ce Level 3.315 4.928 106.1 8.973 83.31				
 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	ML	A-D Test Statistic A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appe k hat (MLE) Theta hat (MLE) nu hat (MLE) E Mean (bias corrected) sted Level of Significance Assu	20.06 Gamma 0.599 0.742 0.186 0.216 ar Gamma 4.029 4.055 128.9 16.34 0.0335 uming Gan 20.8	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significan Detected data appear Gamma Distributed at 5% Significan Distributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	20.11 ce Level 3.315 4.928 106.1 8.973 83.31 81.02				

59 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 61 61 62 61 62 62 Assuming Lognormal Distribution 63 90% Chebyshev (MVUE) UCL 21.93 90% Chebyshev (MVUE) UCL 23 64 95% Chebyshev (MVUE) UCL 26.1 97.5% Chebyshev (MVUE) UCL 33.6 66 67 66 67 86 66 67 86 66 67 86 66 67 86 66 67 86 67 86 67 86 67 86 67 86 67 86 67 86 86 67 86 86 86 86 86 86 86 86 86 86 87 86 86 86 86 86 87 87 87 87 87 87 87 87 87 87 87 87 <	2.664 0.529 23.06 30.32
10% Shapiro Wilk Critical Value 0.906 Data appear Lognormal at 10% Significance Level 10% Ulliefors Test Statistic 0.167 Lillefors Lognormal GOF Test 10% Ulliefors Critical Value 0.96 Data appear Lognormal at 10% Significance Level 10% Ulliefors Critical Value 0.96 Data appear Lognormal at 10% Significance Level 10% Ulliefors Critical Value 0.96 Data appear Lognormal at 10% Significance Level 10% Ulliefors Critical Value 0.96 Data appear Lognormal of the significance Level 10% Ulliefors Critical Value 0.986 Maximum of Logged Data 10% Ulliefors Lognormal Distribution SD of logged Data 1.825 10% Maximum of Logged Data 3.481 SD of logged Data 10% Assuming Lognormal Distribution 1.825 Mean of logged Data 10% Assuming Lognormal Distribution 1.825 Mean of logged Data 10% Assuming Lognormal Distribution 1.825 Mean of logged Data 10% Assuming Lognormal Distribution 1.825 Mean of logged Data 10% Assuming Lognormal Distribution 1.825 Mean of logged Data 10% Assuming Lognormal Distribution 1.825 Mean of logged Data 10% Chebyshev (MVUE) UCL 2.86 1.825 Mean of logged Data<	0.529
33 1 Lilliefors Test Statistic 0.167 Lilliefors Lognormal GOF Test 55 10% Lilliefors Critical Value 0.196 Data appear Lognormal at 10% Significance Level 56 Data appear Lognormal at 10% Significance Level 0.196 Data appear Lognormal at 10% Significance Level 57 Lognormal Statistics 0 Maximum of Logged Data 1.825 Mean of logged Data 0 58 Lognormal Statistics 0 Maximum of Logged Data 3.481 SD of logged Data 0 59 Minimum of Logged Data 3.481 SD of logged Data 0 60 Maximum of Logged Data 3.481 SD of logged Data 0 61 Assuming Lognormal Distribution 90% Chebyshev (MVUE) UCL 2 2 62 95% Chebyshev (MVUE) UCL 28.6 9 9 9 64 95% Chebyshev (MVUE) UCL 28.6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 </th <th>0.529</th>	0.529
35 10% Lillefors Critical Value 0.196 Data appear Lognormal at 10% Significance Level 36 Data appear Lognormal at 10% Significance Level 37 Lognormal Statistics 38 Lognormal Statistics 39 Minimum of Logged Data 1.825 40 Maximum of Logged Data 3.481 51 SD of logged Data 52 Mean of logged Data 53 Maximum of Logged Data 54 Maximum of Logged Data 55 Mean of logged Data 56 Maximum of Logged Data 57 Statistics 58 Mean of logged Data 59 Minimum of Logged Data 50 Maximum of Logged Data 50 Statistics 51 Statistics 52 95% Chebyshev (MVUE) UCL 53 95% Chebyshev (MVUE) UCL 54 95% Chebyshev (MVUE) UCL 55 95% Chebyshev (MUUE) UCL 56 Data appear to follow a Discombile Distribution 57 Nonparametric Distribution Free UCLs 57 95% Standard Bootstrap UCL 19.73 58 Standard Bootstrap UCL 19.73 59 97.5% Chebyshev(Mean, Sd) UCL 22.7 59	0.529
Answer Data appear Lognormal at 10% Significance Level 56 Data appear Lognormal Statistics 57	0.529
30 Lognormal Statistics 57	0.529
S8 Lognormal Statistics 59 Minimum of Logged Data 1.825 Mean of logged Data 1.825 60 Maximum of Logged Data 3.481 SD of logged Data 1.825 61 Assuming Lognormal Distribution 62 Assuming Lognormal Distribution 63 95% Chebyshev (MVUE) UCL 21.93 90% Chebyshev (MVUE) UCL 3 64 95% Chebyshev (MVUE) UCL 26.1 97.5% Chebyshev (MVUE) UCL 3 65 99% Chebyshev (MVUE) UCL 38.6 1 1 66	0.529
39 Minimum of Logged Data 1.825 Mean of logged Data 3 59 Maximum of Logged Data 3.481 SD of logged Data 1 61 Assuming Lognormal Distribution 63 95% Chebyshev (MVUE) UCL 21.93 90% Chebyshev (MVUE) UCL 2 64 95% Chebyshev (MVUE) UCL 26.1 97.5% Chebyshev (MVUE) UCL 3 65 99% Chebyshev (MVUE) UCL 38.6 6 6 66 Nonparametric Distribution Free UCL Statistics 6 6 70 Nonparametric Distribution Free UCL 55% BCA Bootstrap UCL 1 71 95% Standard Bootstrap UCL 19.73 95% BCA Bootstrap UCL 1 72 95% Standard Bootstrap UCL 19.73 95% Deotstrap UCL 2 73 95% Standard Bootstrap UCL 19.73 95% Deotstrap UCL 2 74 90% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3	0.529
59 Minimum of Logged Data 1.825 Mean of logged Data 1 60 Maximum of Logged Data 3.481 SD of logged Data 1 61	0.529
60 Maximum of Logged Data 3.481 SD of logged Data 61	23.06
61 Assuming Lognormal Distribution 62 95% H-UCL 21.93 90% Chebyshev (MVUE) UCL 2 64 95% Chebyshev (MVUE) UCL 26.1 97.5% Chebyshev (MVUE) UCL 3 65 99% Chebyshev (MVUE) UCL 38.6 6 6 66 Nonparametric Distribution Free UCL Statistics 6 6 67 Nonparametric Distribution Free UCL Statistics 6 6 68 Data appear to follow a Discomible Distribution 6 6 70 Nonparametric Distribution Free UCLs 7 7 71 95% Chebyshev (Mean, Sd) UCL 19.73 95% Bootstrap UCL 1 72 95% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 76 Suggested UCL to Use 7 1 1 76 Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL 2 78 95% Student's-t UCL 20.06 1	
02 95% H-UCL 21.93 90% Chebyshev (MVUE) UCL 2 64 95% Chebyshev (MVUE) UCL 26.1 97.5% Chebyshev (MVUE) UCL 3 65 99% Chebyshev (MVUE) UCL 38.6 3 3 66 99% Chebyshev (MVUE) UCL 38.6 3 3 67 Nonparametric Distribution Free UCL Statistics 3 3 68 Data appear to follow a Discernible Distribution 1 3 70 Nonparametric Distribution Free UCLs 5 3 71 95% CLT UCL 19.83 95% BCA Bootstrap UCL 1 72 95% Standard Bootstrap UCL 19.73 95% Bootstrap-t UCL 2 73 95% Standard Bootstrap UCL 19.79 95% Chebyshev(Mean, Sd) UCL 2 74 90% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 3 76 Suggested UCL to Use 95% Student's-t UCL 20.06 3 75 97.5% Chebyshev (Mean, Sd) UCL 20.06 3 3 76 Suggestions regarding the selection	
63 95% H-UCL 21.93 90% Chebyshev (MVUE) UCL 2 64 95% Chebyshev (MVUE) UCL 26.1 97.5% Chebyshev (MVUE) UCL 3 65 99% Chebyshev (MVUE) UCL 38.6 3	
64 95% Chebyshev (MVUE) UCL 26.1 97.5% Chebyshev (MVUE) UCL 3 65 99% Chebyshev (MVUE) UCL 38.6 6 66	30.32
65 99% Chebyshev (MVUE) UCL 38.6 66	
Nonparametric Distribution Free UCL Statistics Nonparametric Distribution Free UCL Statistics Nonparametric Distribution Nonparametric Distribution Free UCLs Note: Student Studen	
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution 68 Data appear to follow a Discernible Distribution 69 Nonparametric Distribution Free UCLs 70 Nonparametric Distribution Free UCLs 71 95% CLT UCL 19.83 95% BCA Bootstrap UCL 1 71 95% Standard Bootstrap UCL 19.73 95% Bootstrap UCL 1 72 95% Standard Bootstrap UCL 19.73 95% Bootstrap UCL 1 73 95% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 74 90% Chebyshev(Mean, Sd) UCL 2.8 99% Chebyshev(Mean, Sd) UCL 2 75 Suggested UCL to Use 76 2 77 Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 82<	
Original Data appear to follow a Discernible Distribution 68 Nonparemetric Distribution Free UCLs 70 Nonparemetric Distribution Free UCLs 71 95% CLT UCL 19.83 95% BCA Bootstrap UCL 1 72 95% Standard Bootstrap UCL 19.73 95% Bootstrap UCL 2 73 95% Hall's Bootstrap UCL 19.79 95% Chebyshev(Mean, Sd) UCL 2 74 90% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 76 Suggested UCL to Use 3 35% Student's-t UCL 20.06 3 78 95% Student's-t UCL 20.06 3 3 3 3 80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 8 8 3 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 4 82 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticia 83 83 84	
08 Nonparametric Distribution Free UCLs 70 Nonparametric Distribution Free UCLs 71 95% CLT UCL 19.83 95% BCA Bootstrap UCL 1 72 95% Standard Bootstrap UCL 19.73 95% Bootstrap UCL 2 73 95% Hall's Bootstrap UCL 19.79 95% Percentile Bootstrap UCL 1 74 90% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 76 Suggested UCL to Use 3 3 78 95% Student's-t UCL 20.06 3 79 95% Student's-t UCL 20.06 3 79 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 8 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 8 82 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticia 83 State of the Wide Wide Wide Add Data 5	
Nonparametric Distribution Free UCLs 70 95% CLT UCL 19.83 95% BCA Bootstrap UCL 1 72 95% Standard Bootstrap UCL 19.73 95% Bootstrap-t UCL 2 73 95% Hall's Bootstrap UCL 19.79 95% Percentile Bootstrap UCL 1 74 90% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 76 76 77 Suggested UCL to Use 3 78 95% Student's-t UCL 20.06 78 79 80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 82 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticia 83 6 84 6	
71 95% CLT UCL 19.83 95% BCA Bootstrap UCL 1 72 95% Standard Bootstrap UCL 19.73 95% Bootstrap-t UCL 2 73 95% Hall's Bootstrap UCL 19.79 95% Percentile Bootstrap UCL 1 74 90% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 76 77 Suggested UCL to Use 3 78 95% Student's-t UCL 20.06 3 79	
72 95% Standard Bootstrap UCL 19.73 95% Bootstrap-t UCL 2 73 95% Hall's Bootstrap UCL 19.79 95% Percentile Bootstrap UCL 1 74 90% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 76 77 Suggested UCL to Use 3 78 95% Student's-t UCL 20.06 3 79 95% UCL are provided to help the user to select the most appropriate 95% UCL. 8 80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 8 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 82 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistical aside astatistical astatistical aside astatistical astatistical aside astatistical asta	10.00
73 95% Hall's Bootstrap UCL 19.79 95% Percentile Bootstrap UCL 1 74 90% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 76	19.98
73 90% Chebyshev(Mean, Sd) UCL 22.7 95% Chebyshev(Mean, Sd) UCL 2 75 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 76 77 Suggested UCL to Use 3 78 95% Student's-t UCL 20.06 3 79 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 82 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticia 83 84	20.36
74 97.5% Chebyshev(Mean, Sd) UCL 29.58 99% Chebyshev(Mean, Sd) UCL 3 76 Suggested UCL to Use 77 78 95% Student's-t UCL 20.06 95% Other 95% UCL 100% <t< th=""><th>19.77</th></t<>	19.77
75 Suggested UCL to Use 77 Suggested UCL to Use 78 95% Student's-t UCL 79 20.06 80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 82 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticia 83 84	25.58
Suggested UCL to Use 78 95% Student's-t UCL 20.06 79	37.44
77 95% Student's-t UCL 20.06 79 95% Student's-t UCL 20.06 80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 82 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticia 83 84	
78 i 79	
80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 82 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticia 83 84	
80 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. 81 Recommendations are based upon data size, data distribution, and skewness using results from simulation studies. 82 However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticia 83 84	
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticia Real World data sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional insight the user may want to consult a statisticia Real World Data Sets; for additional ins	
84 Connect. She Wildo Without Old Mine Dead Date	
83 84 Connect. She Wildo Wilhout Old Mine Dead Deb	ian.
84 Conner, She Wilde Without Old Mine Deed Dete	
Conner, She Wilde Without Old Mine Boad Date	
86	
General Statistics	
	37
	1
Minimum 2.62 Moon 2	32.61
90 Maximumi 1/5 Madiani 2	22.7
91 SD 20.78	4.895
92 Coefficient of Verigtion 0.012	2.403
	2100
94 Normal COE Test	
95 Normal GOF Test	
96 Shapiro Wilk Test Statistic 0.729 Shapiro Wilk GOF Test	
97 1% Shapiro Wilk Critical Value 0.814 Data Not Normal at 1% Significance Level	
98 Lilliefors Test Statistic 0.247 Lilliefors GOF Test	
99 1% Lilliefors Critical Value 0.168 Data Not Normal at 1% Significance Level	
100 Data Not Normal at 1% Significance Level	

	A B C D E	F	G	Н	Ι		J		K	L
101		uming No		tion						
102	95% Normal UCL		rmal Distribu	uon 95% U		diuete	d for S	Skowr		
103	95% Student's-t UCL	40.88			Adjuste	-				42.73
104	557. Olderit 5-002	+0.00			Modifi					41.2
105			<u>گ</u>		, moain					
106		Gamma	GOF Test							
107 108	A-D Test Statistic	0.862		Anderso	n-Darl	lina G	amma	GOF	Test	
108	5% A-D Critical Value		Data	Not Gamma		-				evel
109	K-S Test Statistic	0.144	<u>.</u>	Kolmogor						
111	5% K-S Critical Value	0.147	Detected d	ata appear G						
112										
112			••••••			•••••		•••••		
114		Gamma	Statistics						•••••	
115	k hat (MLE)	1.856	[k۶	star (b	ias cor	rected	MLE)	1.724
116	Theta hat (MLE)		<u>.</u>				ias cor			18.92
117	nu hat (MLE)		å	••••••			tar (bia			127.6
118	MLE Mean (bias corrected)	32.61	·····				Sd (bia			24.84
119			ð	Appr	oximate	e Chi S	Square	Value	(0.05)	102.5
120	Adjusted Level of Significance		5		A					101.5
121			×	••••••		•••••		•••••		••••••
122	Assı	uming Gai	mma Distribu	ition						
123	95% Approximate Gamma UCL	40.6			95	% Adj	usted G	Gamma	a UCL	40.99
124			<u></u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
125		Lognorm	al GOF Test							
126	Shapiro Wilk Test Statistic	0.981		Shapiro						
127	10% Shapiro Wilk Critical Value	0.946	Da	ita appear Lo	gnorma	al at 10	% Sign	ificand	ce Leve	əl
128	Lilliefors Test Statistic	0.0949			fors Lo	gnorn	nal GC)F Tes		
129	10% Lilliefors Critical Value	0.132	Da	ita appear Lo	gnorma					el
130	Data appea	r Lognorn	nal at 10% Si	gnificance	Level					
131										
132			al Statistics							,
133	Minimum of Logged Data	1.289				N	lean of			
134	Maximum of Logged Data	4.977	<u>.</u>				SD of	logge	d Data	0.761
135										
136			normal Distri	bution	000/	<u>.</u>				45.40
137	95% H-UCL	42.62				·····			, 	
138	95% Chebyshev (MVUE) UCL	51.51			97.5% (shev (N		<i>'</i>	59.88
139	99% Chebyshev (MVUE) UCL	76.31	<u> </u>							
140			hution Erec I							
141	• 		bution Free l							
142			v a Discernib							
143	Nanaa	ramatria D	istribution F							
144	95% CLT UCL	40.67	istribution Fr			Q5% =	BCA Bo	otetro	nlici	43.53
145	95% Standard Bootstrap UCL	40.67					5% Boo			43.55 44.9
146	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	40.45					ntile Bo			
147	90% Chebyshev(Mean, Sd) UCL	47.81			95% Cł					
148	97.5% Chebyshev(Mean, Sd) UCL	63.18	<u>.</u>		95% Cl					55.95 81.32
149			§			.00931		an, 00	, 502	51.52
150										

	A B C D E	F	G	Н	I	J	К	L
151			d UCL to Use					
152	95% Adjusted Gamma UCL	40.99						<u>.</u>
153								
154	When a data set follows an app							
155	it is suggested to use a UCL base	ed upon a di	stribution passi	ng both GC	OF tests in Pr	OUCL		
156								
157	Note: Suggestions regarding the selection of a 95%		·····					ICL.
158	Recommendations are based upon data size,						ו studies.	
159	However, simulations results will not cover all Real W	orld data s	ets; for additiona	al insight th	ne user may v	vant to cor	ısult a stati	stician.
160								
161								
162	Selenium - Site Wide without Old Mine Road Data							
163								
164		,	I Statistics					
165	Total Number of Observations	20			Number of [
166			§ ••••••		Number of N	lissing Ob	servations	į
167	Minimum	0.27					Mean	
168	Maximum	3.23	} 				Median	
169	SD					Std. Err	or of Mean	
170	Coefficient of Variation	0.774	§				Skewness	1.77
171								
172			GOF Test					
173	Shapiro Wilk Test Statistic				hapiro Wilk			
174	1% Shapiro Wilk Critical Value	0.868		Data Not N	Normal at 1%	-	ce Level	
175	Lilliefors Test Statistic				Lilliefors G			
176	1% Lilliefors Critical Value		§		Normal at 19		ince Level	
177	Data appear Ap	proximate	Normal at 1%	5 Significa	ince Level			
178								
179		uming No	rmal Distributi					
180	95% Normal UCL				JCLs (Adjus			
181	95% Student's-t UCL	1.252			Adjusted-Cl			
182				95%	% Modified-t	UCL (Johr	ison-1978)	1.263
183								
184		,	GOF Test					
185	A-D Test Statistic		5		on-Darling			
186	5% A-D Critical Value	0.751	ç ç		Gamma Distr			
187	K-S Test Statistic	0.151	2		rov-Smirno			
188	5% K-S Critical Value	0.196	§		Gamma Distr		% Significa	ance Level
189	Detected data appe	əar Gamm a	a Distributed a	at 5% Sigi	nincance Le	VƏI		
190		0	Otetietiee					
191			Statistics		l. atau (1.042
192	k hat (MLE)	2.246					cted MLE)	
193	Theta hat (MLE)	0.429			Theta star (
194	nu hat (MLE) MLE Moon / bios corrected	89.84 0.964				star (bias	<u></u>	
195	MLE Mean (bias corrected)	0.964		۸			corrected)	
196	Adjusted Level of Ciesiference	0.020		Арр	roximate Chi			
197	Adjusted Level of Significance	0.038	<u> </u>		Aajus	ieu CIII Sq	uare Value	57.07
198	A			100				
199		-	mma Distribut			liveted O-	mmalle	1 210
200	95% Approximate Gamma UCL	1.282			95% A	ujusted Ga	mma UCL	1.312

	A B C D E	F	G	Н		I		J		K		L
201												
202		Lognorm	al GOF T									
203	Shapiro Wilk Test Statistic							ormal				
204		10% Shapiro Wilk Critical Value 0.92 Data appear Lognormal at 10% Significance Level										
205	Lilliefors Test Statistic 0.135 Lilliefors Lognormal GOF Test											
206	10% Lilliefors Critical Value	0.176		Data appe	ear Log	norma					el	
207	Data appea	r Lognorm	al at 109	6 Significa	nce L	evel						
208												
209		Lognorm		cs								
210	Minimum of Logged Data									ed Data		.276
211	Maximum of Logged Data	1.172								ed Data		.695
212												
213	Assu	ming Logr	ormal D	istribution								
214	95% H-UCL	1.379				90%	Cheby	shev (MVU	E) UCL	. 1	.426
215	95% Chebyshev (MVUE) UCL	1.641			ę	97.5%	Cheby	shev (MVU	E) UCL	. 1	.938
216	99% Chebyshev (MVUE) UCL	2.523										
217												
218	Nonparam	etric Distrik	oution Fre	e UCL St	atistic	S						
219	Data appe	ar to follow	a Discei	mible Dist	ributio	on						
220												
221	Nonpa	rametric D	stributio	n Free UC	Ls							
222	95% CLT UCL	1.238					95% E	BCA B	ootstra	ap UCL	. 1	.304
223	95% Standard Bootstrap UCL	1.235					95	5% Boo	otstrap	-t UCL	. 1	.388
224	95% Hall's Bootstrap UCL	1.58				95%	Perce	ntile Bo	ootstra	ap UCL	. 1	.25
225	90% Chebyshev(Mean, Sd) UCL	1.464			g	95% CI	hebysł	nev(Me	ean, So	d) UCL	. 1	.69
226	97.5% Chebyshev(Mean, Sd) UCL	2.005			g	9% CI	hebysł	nev(Me	ean, So	d) UCL	. 2	2.622
227												
228		Suggested	UCL to	Use								
229	95% Student's-t UCL	1.252										
230												
231	When a data set follows an app	roximate dis	stribution p	bassing only	y one o	of the C	GOF te	sts,				
232	it is suggested to use a UCL base	ed upon a di	stribution	passing bo	th GOI	= tests	in Pro	UCL				
233												
234	Note: Suggestions regarding the selection of a 95%					elect th	e mos	t appro	priate	95% L	ICL.	
235	Recommendations are based upon data size,	data distribu	ition, and s	skewness ı	using r							
236	However, simulations results will not cover all Real W										sticia	n.

APPENDIX F

SAMPLE CALCULATIONS

SAMPLE HUMAN INTAKE AND RISK CALCULATIONS

NON-CANCER RISKS

Sample Scenario

- Receptor: Toddler Site Resident (Future "University" Scenario)
- COPC: Arsenic in surface soil (188 mg/kg)
- Exposure pathways:
 - soil particulate inhalation
 - incidental soil ingestion
 - o dermal soil contact

Soil Particulate Inhalation Pathway

The chronic daily dose of arsenic via the inhalation of soil particulates was calculated for the toddler Site resident as follows:

$$CDD = \underline{C_s * P_{air} * IR_a * RAF_{inh} * D_1 * D_2 * D_3}{BW}$$

Where:

CDD =	Chronic Daily Dose (mg/kg-day)
C _s =	soil concentration (arsenic): 188 mg/kg
P _{air} =	particulate concentration in air: 7.6E-10 kg/m ³
IRa =	inhalation rate: 8.3 m ³ /day
RAF _{Inh} =	relative absorption factor by inhalation: 1
D ₁ =	hours per day exposed: 24 hours / 24 hours
D ₂ =	days per week exposed: 7 days / 7 days
D ₃ =	weeks per year exposed: 26 weeks / 52 weeks
BW =	body weight: 16.5 kg

```
CDD = <u>188 mg/kg * 7.6E-10 kg/m<sup>3</sup> * 8.3 m<sup>3</sup>/day * 1 * 24 hrs/24 hrs * 7 days/7 days * 26 wks/52 wks</u>
16.5kg
```

CDD= 4.0E-08 mg/kg-day

A Hazard Quotient was calculated for this exposure pathway as follows:

HQ = CDD/TRV

Where:

CDD = 4.0E-08 mg/kg-dayTRV = 3.0E-04 mg/kg-day

HQ_{arsenic}= 4.0E-08 mg/kg-day/3.0E-04 mg/kg-day = 0.0001

Soil Ingestion Pathway

The chronic daily dose of arsenic via the incidental ingestion of shallow soil were calculated for the toddler Site resident as follows:

 $CDD = \frac{C_s * IR_s * RAF_{oral} * D_2 * D_3}{BW}$

Where:

CDD	=	Chronic Daily Dose (mg/kg-day)
Cs	=	soil concentration (arsenic): 188 mg/kg
IRs	=	soil ingestion rate: 8.0E-05 kg soil/day
RAFora	I =	relative absorption factor by GI tract: 0.22
D_2	=	days per week exposed: 7 days / 7 days
D_3	=	weeks per year exposed: 26 weeks / 52 weeks
BW	=	body weight: 16.5 kg

CDD = <u>188 mg/kg * 8E-05 kg soil/day * 0.22 * 7 days/7 days * 26 wks/52 wks</u> 16.5kg

CDD = 1.0E-04 mg/kg-day

A Hazard Quotient was calculated for this exposure pathway as follows:

HQ = CDD/TRV

Where:

CDD = 1.0E-04 mg/kg-dayTRV = 3.0E-04 mg/kg-day

HQ_{arsenic}= 1.0E-04 mg/kg-day/3.0E-04 mg/kg-day = 0.33

Soil Dermal Pathway

The chronic daily dose of arsenic via dermal contact with shallow soil was calculated for the toddler Site resident as follows:

$$CDD = (\underline{C_s * ((SA_h * SL_h) + (SA_a * SL_a))) * nEv * RAF_{derm} * \underline{D_2} * \underline{D_3}}_{BW}$$

Where:

CDD	=	Chronic Daily Dose (mg/kg-day)
Cs	=	soil concentration: 188 mg/kg
SAa	=	exposed skin surface area (arms): 890 cm ²
SAh	=	exposed skin surface area (hands): 430 cm ²
SL_a	=	soil loading to exposed skin (arms): 1.0E-08 kg/cm ² /event
SL_h	=	soil loading to exposed skin (hands): 1.0E-07 kg/cm ² /event
nEv	=	number of dermal exposure events/day: 1
RAF _{de}	rm=	relative dermal absorption factor: 0.03
D_2	=	days per week exposed: 7 days/7 days
D_3	=	weeks per year exposed: 26 weeks/52 weeks
BW	=	body weight: 16.5 kg

```
CDD= (<u>188mg/kg*((430cm<sup>2</sup>*1E-07kg/cm<sup>2</sup>/ev)+(890cm<sup>2</sup>*1E-08kg/cm<sup>2</sup>/ev)))*1*0.03*7days/7days * 26wks/52wks</u>
16.5kg
```

CDD = 8.9E-06 mg/kg-day

A Hazard Quotient was calculated for this exposure pathway as follows:

HQ = CDD/TRV

Where:

CDD = 8.9E-06 mg/kg-dayTRV = 3.0E-04 mg/kg-day

HQ_{arsenic}= 8.9E-06/3.0E-04 = 0.03

TOTAL HQ_{arsenic} = HQ_{dust inhalation} + HQ_{soil ingestion} + HQ_{dermal} = 0.0001 + 0.33 + 0.03= 0.33

CANCER RISKS

Sample Scenario

- Receptor: Adult Site Resident (Future "University" Scenario)
- COPC: Arsenic in surface soil (188 mg/kg)
- Exposure pathways:
 - soil particulate inhalation
 - \circ incidental soil ingestion
 - o dermal soil contact

Soil Particulate Inhalation Pathway

The lifetime average air concentration of arsenic via the inhalation of soil particulates was calculated for the adult Site resident as follows:

LAAC = $C_s * P_{air} * RAF_{inh} * D_1 * D_2 * D_3 * D_4/LE$

Where:

LAAC	=	Lifetime average air concentration (mg/m ³)
Cs	=	soil concentration (arsenic): 188 mg/kg
P_{air}	=	particulate concentration in air: 7.6E-10 kg/m ³
RAFInt	, =	relative absorption factor by inhalation: 1
D ₁	=	hours per day exposed: 24 hours / 24 hours
D_2	=	days per week exposed: 7 days / 7 days
D_3	=	weeks per year exposed: 26 weeks / 52 weeks
D_4	=	years exposed: 60 years
LE	=	life expectancy: 80 years

LAAC = 188mg/kg * 7.6E-10kg/m³ * 1 * 24hrs/24hrs * 7days/7days * 26wks/52wks * 60yrs/80yrs

LAAC = 5.0E-08 mg/kg-day

An Incremental Lifetime Cancer Risk was calculated for this exposure pathway as follows:

ILCR = LAAC x TRV

Where:

LAAC = $5.0E-08 \text{ mg/m}^3$ TRV = $6.4 \text{ (mg/m}^3)^{-1}$

ILCR_{arsenic}= 5.0E-08 * 6.4 = 3.4E-07

Soil Ingestion Pathway

The lifetime average dose of arsenic via the incidental ingestion of shallow soil were calculated for the adult Site resident as follows:

 $LAD = \frac{C_s * IR_s * RAF_{oral} * D_2 * D_3 * D_4}{BW * LE}$

Where:

LAD	=	Lifetime Average Dose (mg/kg-day)
Cs	=	soil concentration (arsenic): 188 mg/kg
IRs	=	soil ingestion rate: 2.0E-05 kg soil/day
RAFora	ı =	relative absorption factor by GI tract: 0.22
D_2	=	days per week exposed: 7 days / 7 days
D_3	=	weeks per year exposed: 26 weeks / 52 weeks
D_4	=	years exposed: 60 years
BW	=	body weight: 70.7 kg
LE	=	life expectancy: 80 years

LAD = <u>188 mg/kg * 2E-05 kg soil/day * 0.22 * 7 days/7days * 26 wks/52 wks * 60 years</u> 70.7 kg * 80 years

LAD = 4.4E-06 mg/kg-day

An Incremental Lifetime Cancer Risk was calculated for this exposure pathway as follows:

ILCR = LAD * TRV

Where:

LAD = 4.4E-06 mg/kg-dayTRV = 1.8 (mg/kg-day)⁻¹

ILCR_{arsenic}= 4.4E-06 mg/kg-day * 1.8 mg/kg-day = 7.9E-06

Soil Dermal Pathway

The lifetime average dose of arsenic via dermal contact with shallow soil was calculated for the adult Site resident as follows:

$$CDD = (\underline{C_s * ((SA_h*SL_h)+(SA_a*SL_a))) * nEv * RAF_{derm} * \underline{D_2 * D_3 * D_4}}_{BW * LE}$$

Where:

LAD	=	Lifetime Average Dose (mg/kg-day)
Cs	=	soil concentration: 188 mg/kg
SAa	=	exposed skin surface area (arms): 2500 cm ²
SA_h	=	exposed skin surface area (hands): 890 cm ²
SL_a	=	soil loading to exposed skin (arms): 1.0E-08 kg/cm ² /event
SL_h	=	soil loading to exposed skin (hands): 1.0E-07 kg/cm ² /event
nEv	=	number of dermal exposure events/day: 1
RAF _{der}	-m=	relative dermal absorption factor: 0.03
D_2	=	days per week exposed: 7 days/7 days
D_3	=	weeks per year exposed: 26 weeks/52 weeks
D_4	=	years exposed: 60 years
BW	=	body weight: 70.7 kg
LE	=	life expectancy: 80 years

 $LAD = (\underline{188mg/kg^{*}((\underline{890cm^{2}*1E-07kg/cm^{2}/ev})+(\underline{2500cm^{2}*1E-08kg/cm^{2}/ev})))^{*}1^{*}0.03^{*}7days/7days * \underline{26wks/52wks * 60 years} \\ 70.7kg * 80 years$

LAD = 3.4E-06 mg/kg-day

An Incremental Lifetime Cancer Risk was calculated for this exposure pathway as follows:

ILCR = LAD * TRV

Where:

LAD = 3.4E-06 mg/kg-dayTRV = 1.8 (mg/kg-day)⁻¹

ILCR_{arsenic}= 3.4E-06 * 1.8 = 6.1E-06

TOTAL ILCR_{arsenic} = ILCR_{dust inhalation} + ILCR_{soil ingestion} + ILCR_{dermal} = 3.4E-07 + 7.9E-06 + 6.1E-06 = 1.4E-05